Social Design Practices for Human-Scale Online Games

comments 2
Ported Posts / Uncategorized

For this year’s Project Horseshoe, an annual game designer think tank, our workgroup investigated small-scale MMOs. You can read the other reports here:

Our group consisted of:

  • Alexander Youngblood, Game Designer at ArenaNet
  • Amy Jo Kim, Chief Executive Officer at Shufflebrain
  • Crystin Cox, Principal Program Manager at Microsoft
  • Daniel Cook, Chief Creative Officer at Spry Fox
  • Erin Hoffman-John, Lead Prototyper at Google
  • Isaiah Cartwright, Game Director at ArenaNet
  • Kyle Brink, Director of Production at ArenaNet
  • Link Hughes, Game Designer at ArenaNet


Many of the problems associated with making an MMO, a Massively Multiplayer Online game, come in large part from the very first term: “Massively”. An MMO is notably tricky to build due to technical issues involving server scaling, as well as design issues involving scaling economics, politics, level design, pacing, persistence, and progression. A rule of thumb is that development costs grow exponentially as the number of players increases, but for many years, there’s been an unquestioned assumption that bigger player numbers are inherently better and therefore worth pursuing.

Yet we see clear counterexamples. Many early MUDs (Multi-User Dungeons) involved populations of dozens-to-thousands of people and still have vibrant communities to this day [1]. Multiplayer Minecraft is wildly successful, despite its reliance on relatively small, instanced servers. And many modern hit games, like Fortnite, are online games that successfully limit their focus to matches of 100 or less.

What are the critical design lessons from these smaller online games—and how can current research and understanding of social psychology help make sense of those lessons? We combined our decades of experience designing social systems for online games and a deep dive into current academic research to arrive at a set of best practices and common pitfalls.
What we’ll cover in this paper:

  • What we can borrow from social psychology
  • An overview of friendship formation
  • Dunbar’s Layers and the constraints they place on social systems design
  • Social group and the constraints they also introduce
  • Big design insights
  • Opportunities for fulfilling the social motivations of players
  • Conclusion

Borrowing from social psychology

When researching what it meant to make human-scale systems, we found several key concepts from social psychology. Each provides a set of constraints for social design. Social game design operates within the physical and mental constraints of the human animal, so it pays to understand these constraints and build them into our designs.


A friendship is a single social bond between two people. Friendship formation is a distinct process involving proximity, similarity, reciprocity, and disclosure.

Dunbar’s Layers

An individual has a highly structured distribution of relationship bonds. People tend to have a maximum of 150 total friendships [2], including 50 good friendships, which include 15 best friendships, which, in turn, include 5 intimate friendships. This web of relationships can be modeled as an egocentric network with the individual at the center. This paper focuses primarily on the implications of Dunbar’s Layers for human-scale social design in online games.

Social groups

A social group of is a collection of people brought together for a shared task or interest. Groups contain multiple overlapping individual networks. The performance of the group, as a whole, is dependent on how the friendship bonds across the entire group are leveraged to accomplish the shared activity.


At the most basic level, human-scale game design is about creating strong relationship bonds between individuals. Most game populations will start out with weakly-bonded individuals. You’ll need to create activities, incentives, spaces, and social structures that actively build friendship in order to enable even the most basic of trust-based activities.

This section is a brief overview. For more detailed discussion on this topic see the 2016 Project Horseshoe paper on game design for building friendships.

The basics of growing friendships

Friendship formation requires 4 key ingredients:

  • Proximity. Being close together to one another encourages frequent serendipitous interactions.
  • Similarity. Players will generally be more likely to become friends if they perceive one another to be similar.
  • Reciprocity. Players must engage in escalating back-and-forth interactions in order to negotiate shared social norms.
  • Disclosure. At higher levels of friendship, there needs to be an opportunity for safe, consensual, intimate sharing of weaknesses.

You can take any two players, put them together in matches for hundreds of hours, and if the above criteria are not met, they are unlikely to become friends. Naively tossing bodies at one another is not efficient social design.

The micro-design of social systems is all about reciprocation loops

As a designer, you specifically have to build opportunities for consensual reciprocity into your game loops. These look like the following:

  • Opening. A person performs an opening action that a second person observes. This action has a cost in terms of time, investment, skill, and other resources. For example, Player 1 asks a question in open chat, which costs time and social capital.
  • Opportunity. An opportunity is created for the second person to respond. For example, Player 2 sees the question and can answer in the same chat.
  • Response. The second person performs a responding action that acknowledges the first person. This also has a cost. For example, Player 2 offers an answer to the question in chat, which also costs time and social capital.
  • Acknowledgement. The first person acknowledges the second’s response and the loop is now complete. For example, Player 1 thanks Player 2 for answering their question in open chat.

Common Variations

  • Escalation. Either during the Response or the Acknowledgement stages of the loop, a person can escalate by opening up a new loop or prompting additional response. This is an opt-in act. For example, Player 1 asks for additional details.
  • Rejection. Either during the Response or the Acknowledgement stage, a person can either not respond or respond inappropriately, which also collapses the loop. For example, Player 2 mocks Player 1 instead of answering their questions.

Link loops together in an escalating structure

Friendship is a long-term process. Each reciprocation loop may take seconds initially, but you need thousands of linked loops to build a robust friendship.

  • Create low-cost loops with low rejection costs for early relations.
  • Create higher-cost loops for later term relationships.
  • Build space inside the later loops for expression and definition of the personal relationship between two players.

For example, friendships in an MMO tend to start out with parallel play, where two people simply see one another’s name while fighting monsters in the same area. This then escalates to helping one another; a heal spell, an emote of celebration, a dropped item. The two players may start chatting in order to take down harder monsters; they may also friend one another and start talking more about who they are and what they are interested in.

At each stage, interactions take increasing time and effort. And involve richer communication. Each micro-loop is not very expensive, but over long-term repetition of many such loops, the relationship accumulates meaningful amounts of trust.

Design these systems with the same rigor, care, and eye for economic balance that you’d put towards a combat or progression system.

Design for consent

Almost every stage of these reciprocation loops involves consent. Each party must consent to both starting, continuing, and escalating the relationship. At any point, it is totally fine for one or both parties to pull away, either to slow down or move onto some other relationship opportunity.

In the context of Dunbar’s Layers, there’s a limit on the number of people an individual can have in their lives. The process of building friendship is also the active process of curating relationships that are healthy and mutually satisfying. When players actively and enthusiastically consent to engage in your reciprocation loops, you’ll find that the relationships you build in your game are more authentic, last longer, and ultimately provide more value to your players.

Dunbar’s Layers

An individual organizes their friendships by strength of their one-to-one bonds. They have close friends they turn to in times of crisis and more casual friends, with whom they interact with less frequently. Social psychology has been studying these friendship networks for decades. One of the more reproducible findings is the existence of strong limits on the number and strength of bonds an individual can have with other humans.

Dunbar’s Number

Robin Dunbar is an anthropologist who, in the 1980s, posited that a human can have up to 150 meaningful relationships, based off his investigations into primate social brain structures [3]. When others attempted to verify this prediction, they found that “Dunbar’s Number” kept coming up in long-lasting groups in the real world. It’s been replicated across a huge number of domains including businesses, religious organizations, military groups, and, of course, MMO guilds.

Multiple layers, not a single number

However, as researchers dug further into the data, they noticed additional stable clustering at lower numbers of connections. These smaller clusters were part of a person’s total of 150 relationships, but involved much stronger bonds.

Visualization of Dunbar’s Layers. Each block represents time to build one relationship in that layer.

Friend layers

Dunbar’s Layers, as these smaller clusters are known, are generally organized as follows:

  • 1.5 people: The intimate couple or the individual.
  • 5 people: Intimate friends or family. People you can call in a crisis.
  • 15 people: Best friends. People who you can ask for sympathy.
  • 50 people: Good friends. The majority of regular social contacts and, by extension, all of one’s emotional and economic support [4].
  • 150 people: Casual friends or acquaintances.

Note that each layer is cumulative and contains the previous layers, so your best friend layer contains your intimate friends layer as well. A common confusion is to think you have 5 intimate friends AND an additional 15 best friends, etc., but those 5 intimate friends are part of your 15 best friends budget.

These numbers are averages and, in reality, describe tight ranges. In practice, different people have different degrees of social needs and relationship-building capacity. For example, many men average 3-4 relationships that they would consider intimate friends or family, while many women average 7-9 such relationships. Some people, known as “super-connectors,” have upward of 200–250 meaningful friendships.

Non-friend layers

With larger data sets, we’ve discovered these relationships layers also extend past actual friends.

  • 500 people: Nodding acquaintances.
  • 1500 people: You recognize their face, but that’s it. 2000 faces seems to be the absolute maximum that a human can recognize and when you learn a new face, you drop one of the other faces you’ve memorized.

Implications of Dunbar’s Layers

On first glance, Dunbar’s Layers are a mere curiosity. However, they fundamentally shape how people socialize. The following are aspects of Dunbar’s Layers worth knowing about before you attempt to use them in a design.

Dunbar’s Layers are egocentric networks

Visualizing the innermost Dunbar’s Layers as an egocentric network. Note all connections are from the perspective of a single individual.

An ideal way to visualize Dunbar’s Layers is as a network of connections, not as separate layers, per se. In research, this is known as an “egocentric network.”

  • Put a given individual at the center of a nodal network.
  • Then map out bonds going directly to that individual. You’ll end up with an average of 150 meaningful relationships connected to the individual.
  • Some bonds between the individual and their friends will be stronger than others. These bonds map onto Dunbar’s Layers. For example, a person will have an average of five strong bonds.

There are several different ways egocentric networks can be used in analysis of individual relationships:


  • Dyads: The relationship between any two individuals involves two connections, not one. Each person has their own perception of the connection’s strength. It is possible—and, in fact, common [5]—for these perceptions to be unequal.
  • Triads: Friendship networks can be analyzed by looking for triads—groupings of three people with at least two relationships between them. The strongest network structure is a “Triadic Closure,” wherein all three three individuals share mutual friendship bonds of equal strength.
  • Strong Ties: When a person has a direct relationship with another person, it is known as a strong bond. Strong bonds are key to meaningful relationships, support networks and overall happiness.
  • Weak Ties: When a person’s friend has a relationship with another person, but the original person does not, it is known as a weak bond. Weak ties are critical to connecting independent social groups and are particularly important for the functioning of large scale economic and informational systems. Weak ties also populate the 500 and 1500 person layers. When we start discussing social groups, weak ties become a very important concept.
  • Super-connectors: Some individuals have substantially more than the the typical number of connections. Known as “super-connectors,” they end up acting as hubs that connect disparate friend networks together.

Close friendships have a strong influence on quality of life

Overall, having a deep friend network has an immensely positive impact on your health and happiness.

  • Lack of friendship reduces lifespan [6].
  • High quality, high intensity relationships are positively correlated with increased life satisfaction [7].
  • Depression is lower overall in individuals with rich friend networks [8].

On the flip side, toxic relationships have an outsized negative impact on mental and physical health. Something to think about when we deal with trolls in our games [9].

High trust relationships take time and the right context

Building friendships takes many hours of interaction.
The time required to build a single friendship bond [10]:

  • Casual Friend: 40-60 hours
  • Good Friend : 90-110 hours
  • Best Friend: >200 hours

If you meet with someone for 1 hour each week, it will take roughly a year before you consider one another even casual friends. Friendship formation is not a cheap activity.

Maintaining relationships takes less effort. Three key variables here are kinship, gender and frequency of interaction. Kin bonds (bonds with family members) require less maintenance than non-family friendship bonds and do not seem affected by distance. Men tend to affirm bonds by participating in activities together, while women tend to talk with another. Higher strength bonds needs more frequent renewal than lower strength bonds.

  • Casual friends meet up at least once a year.
  • Good friends meetup up once every 6 months.
  • Best friends meet up once a month.
  • Intimate friends meet up at least once a week.

You can’t beat the system

One way of thinking about the constraints suggested by Dunbar’s Layers is to imagine you have a budget of cognitive resources that can be spent on relationships. The physical limits of your human brain mean that you only have enough mental budget for a total of roughly 150 relationships.

Humans have developed a few tools that have expanded our ability to organize into groups well past our primate cousins—most notably language—but also large-scale systems of government and economics. In the early 2000s, people assumed that new technologies like online social networks could help break past Dunbar’s Number; by offloading the cost of remembering our friendships to a computer, we could live richer, more social lives, with strong relationships to even more people.

We now have copious data that this is not the case. Studies suggest that there’s still a limited budget of cognitive resources at play and even in online platforms we see the exact same distribution of relationships [11].

If anything, social networks damage our relationships. By making it possible for us to cheaply form superficial relationships (and invest our limited energy in maintaining them), such systems divert cognitive resources from smaller, intimate groups out towards larger, less-intimate groups. The result is that key relationships with best friends and loved ones suffer. And, unfortunately, it is the strength of these high-trust relationships that are most predictive of mental health and overall happiness [12].

Social Groups

What is a social group?

A social group is a set of individuals labeled as being in a group. This is inherently a fuzzy concept, since the true structure thereof is an overlapping network of egocentric networks, partially-negotiated social norms, and ever-shifting relationship bonds.
There are three dominant perspectives on what makes a group.

Social Identity perspective: “I feel like I’m part of a group.” An individual can self-identify if they are part of a group. By doing so, they start practicing the social norms of the identified group. This is the perspective that gives birth to either imposter syndrome or a feeling of belonging.

Self-categorization perspective: “I feel like you are part of a group.” Someone looking at the behavior of other people can identify if others are behaving as part of a group. By doing so, they treat those people as if they operate using shared social norms. This is the perspective that gives birth to stereotypes.

Social cohesion perspective: “We act according to shared social norms.” A set of people that act in similar manner across a variety of social variables is a group. Those variables include:

  • Shared goals. Are we working towards the same purpose?
  • Roles. Who does what?
  • Status relationships. Who has power?
  • Norms. How do we work together?
  • Sanctions. What happens when norms are violated?

Additional factors that can be used to determine group cohesion include:

  • Group size. How many people are in the group?
  • Group trust. How strong are the bonds between individuals in the group?
  • Group stability. Does the group come together for a short period of time or is it a stable, persistent entity?

The social cohesion perspective proves the most design insight, so we’ll be referencing it for the rest of this discussion.

Group size

Common groups sizes roughly align with Dunbar’s Layers. However, these are not identical concepts. Social groups can contain friends of varying trust levels. You could have a small group composed entirely of strangers. whereas a 5-person intimate friends layer is, by definition, an individual’s closest set of friends.

Small friend groups

These are some of the most common task-oriented groups to form. Non-kin, task-focused groups of these sizes often dissipate when the task is complete. Small groups are, however, able to attain the highest strength of social bonds, usually focused on key family relationships.

  • Pair. 2 people
  • Small Group. 5 ± 2 people
  • Medium group. 15 ± 6 people

Large social groups

These are the largest-possible friend groups. Example groups at these sizes include a guild, shard, or map in an MMO, a mid-sized company, or a social organization in a university.

  • Band. 50 ± 18 people
  • Clans. 150 ± 50 people

Huge impersonal groups

These larger groups are composed of smaller friend-based sub-groups. However, due to their size being larger than Dunbar’s Number, it is impossible for them to engage in very high-trust activities without additional systems like hierarchy, reliance on weak ties, or codified rules.

  • Mega-bands. 500 ± 150 people
  • Tribes. 1500 ± 500 people

Group trust

Group trust, much like friendship, forms according to a process that imposes constraints on any social design. When we matchmake a set of random players together, we first get a low-intimacy, low-trust group of strangers. We then need to take that group through a period of social norm formation and relationship building. This process creates a rich, highly predictive social contract between individuals, which enables people to depend on one another in dynamic group activities.

The process driving group trust

Tuckman’s classic stages of group formation are:

  • Forming: The group is brought together.
  • Storming: The group attempts to make use of disparate norms for interacting with one another. This dissonance causes conflict. This process is very similar to the reciprocation loops that occur in friendship formation
  • Norming: The group negotiates common norms that this group will operate by
  • Performing: The group is able to perform higher-dependency tasks by leveraging their newly developers rules for interacting.

This relates to Dunbar’s Layers in a few key ways:

  • Existing strong bonds can facilitate group norming. If there are existing friends, they’ve already negotiated a set of common norms between them. This is a foundation to build upon when deciding the group’s shared goal and social contract.
  • Small groups need to build fewer bonds in order to perform at high levels. You can think of the norming process as one where people negotiate some minimum level of triadic bonds between all members of the group. With smaller groups, there are fewer connections, so the process goes more quickly.
  • Larger groups naturally have fewer intimate bonds. When dealing with people in the outer layers of our network, we rely more strongly on official rules, rigid social norms, and other forms of bureaucracy. People stop trusting the individual and instead lean upon a system of governance. This is less efficient, in general, due to the cost of maintaining the system, but lets more people participate.

Tips for building group trust

  • Mentoring. People often obtain high levels of competence through interaction with a coach or mentor. Finding ways to incentivize groups to adopt lower-skill members in order to train them up will benefit both group cohesion and general communal friendliness.
  • Slower integration. If facilities are not provided for subdividing groups at this layer in to smaller groupings, then every new member must be inducted by introducing them into a central communication channel. This greatly reduces the chances for the new member’s retention in the group, as they must form relationships with everyone at once, rather than being adopted by a segment of the organization and then extending their relationship network outward from that solid foundation. The best groups at this size and above have clear 15-ish person clusters, which are an ideal size for integrating a new member.

Group stability

Groups vary substantially in how long they last. There are two distinct types of groups worth looking for when designing your group systems:

  • Primary groups. Long-lasting groups of family and friends. They tend to have strong bonds and a shared sense of purpose. People usually only belong to a few primary groups corresponding with their inner Dunbar’s Layers.
  • Secondary groups. Temporary, task-focused groups. These can be large or small. People often belong to many secondary groups corresponding to their outer Dunbar’s layers. It is important to allow people to join (and leave) multiple secondary groups, as they need.

Large group stability

Even through group size and Dunbar’s Layers are very different concepts, they do seem to be related. Small groups are stable at around 5 people, primarily due to their heavily reliance on long-lasting family relationships. Large group sizes tend to stabilize around the 50, 150, 500, and 1500 values found in Dunbar’s Layers.

This works in two directions:

  • Growth: Groups below 150 tend to grow to that size.
  • Fission: Groups above 150 tend to fragment into sub-groups of 150 or less.

Stable friend groups

Groups at 50 and 150 find long term stability, often measured in years, by benefiting from peer pressure (norm reward and censure), without the need for complex rules and hierarchy. The stronger the sense of shared purpose, the more robust the group. There’s more research to be done here, but this seems to be the maximum group size where, due to the limits of Dunbar’s Layers, you can rely on unaugmented human nature to self-organize into stable groups.

Stable non-friend groups

Stable groups at 500 and 1500 are far rarer because they require the addition of some from of hierarchy in order to be sustainable. Usually this involves appointing a small group of 4-5 decision makers who represent other 50 to 150 member sub-groups. These decision makers represent ‘weak ties’ between groups.

Weak ties are key to the stability of 500 and 1500 player groups. They let a group of 50-150 reach out to other groups and quickly gain access to resources, opportunities, and information. Studies show having a diverse set of weak ties — particularly in a large community of uncaring strangers — increases life satisfaction.

Weak ties are not universally good for game developers.

  • Scope creep. The economic and political systems necessary to make very large groups function are often some of the most complex features in a game. To support weak ties in your game is to accept a certain level of scope creep.
  • Over emphasis on weak ties can hurt strong ties. Weak ties are also not a replacement for strong ties. Social groups involving mostly weak ties are poor at providing emotional support as well as transferring and enforcing group norms. Many critiques of strongly capitalist, technocratic or libertarian dystopias center on how a overreliance on weak ties (via large-scale trade, algorithmic replacement of reciprocation loops, and other scaleable-yet-dehumanized systems) leads to an accidental erosion of strong ties.

If anything, modern MMOs suffer from too many weak ties and not enough emphasis on building and supporting strong ties. Perhaps because MUDs and early online games were historically rich with strong bonds, MMO designers simply assumed they’d get those for free. They didn’t realize their desire to build a big game—which historically has been conflated with popularity—was antithetical to the magical social connections that made early online games attractive in the first place.

Shared goals for different group sizes

Shared goals are the single strongest predictor of group cohesion. Groups with more group pride and stronger task commitment have strong shared goals. They are most likely to perform well at high-trust tasks, and have high retention, longevity, and increased sense of member well-being.

Group pride and identity

Members with strong group pride feel strong allegiance to the group, are happy with what the group accomplishes, and promote the group identity to others. Group pride is expressed in the same fashion across different group sizes, but identity becomes more formalized as group size increases.

  • Weak identity. Small friend groups may not have an official identity, and many of their positive feelings come from mutual support.
  • Official identity. Large social groups have official identities and a strong sense of membership. When people are part of a high-performance group, they feel like they are part of something bigger than themselves, which can lead to a sense of awe.
  • Stereotype-based identities. At the huge impersonal scale, we see strong tribal identities and stereotypes. People build simple cartoon models of how other people should respond to interactions. Splitting people into in-group members and out-group members occurs relatively quickly, using only superficial information.

Task commitment

Task commitment is about shared activities that contribute to a common goal. Group pride answers, “Who are we and do I belong?” Task commitment, by contrast, answers, “What are we accomplishing by working together?”

  • Tactical tasks. Small secondary groups understand their purpose in terms of short term tactical tasks. This could be completing a small project or finishing an ad-hoc raid together. Small primary groups are usually focused on supporting one another.
  • Trying to sustain the group. Large social groups are focused on bigger topics like long-term survival or sustaining a community that upholds shared beliefs. Group vs group superiority is an interesting task at this scale, especially for groups composed largely of young men.
  • Part of an ecosystem. Huge impersonal groups are brought together by convenience. They share a common set of codified practices involving trade, language, and practices that help their smaller friend groups accomplish desired goals. The task commitment present at this level usually involves maintenance of support systems such as political or economic structures.

Tips for increasing shared goals

  • Share goals, not just shared rewards. Many game designers assume that if there is a shared reward, people will naturally align their activities. This might work if humans were hyper-rational, profit-maximizing automatons, but they are not. Instead, players benefit from clearly-stated goals and examples of how they might work together.
  • Public and private spaces. Large social groups are composed of sub-groups that require private space to reinforce vision and social norms as well as create opportunities for group bonding. They also need public space to display and reinforce the group’s overall identity.
  • Group vs. group content. Conflict with other groups is a common method of providing a shared purpose. Meaningful rivalries can play out over the course of months or years. Games with PvP content can create very rich social histories if they can operate at this scale.
  • Positive goals involving growth and support. Though it is easy to rely on competition in order to give your group a purpose, history is rich with high-longevity groups, usually in the form of religious communities, that exist to preserve a positive way of life. Consider how your game can be a positive refuge from the broader world. Many players will find this to be a worthy goal to dedicated their time toward.

Roles for different group sizes

Every group needs to agree on roles within society. These are composed of appropriate division of labor and division of resources.

Division of labor

Specialization increases with group size.

  • Overlapping roles. In small friend groups, there’s substantial overlap in roles, with a single individual performing many different activities on an as-needed basis. Cross-training and a lack of specialization is quite common. On high-trust tasks, there’s heavy interdependency and the loss of any individual is sorely felt by everyone.
  • Specialization. In large social groups, we start to see specialization where individuals take on specific roles. Secondary groups focused on specialized tasks are common and people belong to multiple of them. An individual may train in several roles and perform one role for each secondary group.
  • Jobs become identities. Huge impersonal groups see the emergence of jobs and classes. A person has one dominant job they do in a hyper-specialized economy, which becomes their formal identity within a broader, rule-based society. They are a crafter, or a teacher, or a doctor, and nothing else.

Division of resources

Economic complexity increases with group size.

  • Communal sharing. With small friend groups, resources are often communal in nature with substantial gifting and untracked sharing. Social currency and interpersonal trust are more important to transactions than currency.
  • Value-based barter. In large social groups more formalized 1-to-1 trade in the form of barter appears. There may be a local currency and individuals keep close track that each trade is of equitable value.
  • Complex economic networks. In huge impersonal groups, both labor and resources are traded within an economic network with markets and auctions. Trade is strongly depersonalized, with every interaction based off a standardized currency. This network is heavily dependent on weak ties and super-connectors—people who can maintain more than 150 meaningful connections—play an outsized role in keeping various sub-groups together.

Status relationships for different group sizes

Status and hierarchy start out relatively undefined in smaller groups and grow in complexity with group size.


Leaders become more important and less personal in larger groups.

  • Context-specific leader. Small friend groups often end up electing a de facto leader, consciously or subconsciously, who is best-suited for the task at hand. Groups this size should be encouraged to designate a leader/organizer who can help keep the members focused on their shared purpose.
  • Cult of personality. Large social groups require leaders. Synchronization of activity becomes immensely difficult without a central authority wrangling the various sub-groups to move in an aligned direction. At this size, leadership is largely a “cult of personality,” driven by personal relationships instead of institutional power.
  • Symbolic leaders. Huge impersonal groups use ceremonial leadership, where the leader is a concrete, personified symbol of shared purpose, allegiance, and/or cultural values. There are a variety of related techniques including the use of celebrity, figurehead leaders, religious characters, or heroic individuals. These establish a type of group known as a reference group, which individuals look to when determining which social norms to emulate.


Hierarchy becomes increasingly necessary as group size increases.

  • Fluid. Small friend group organization is fluid and often depends on the best person for the task at hand stepping up.
  • Activity related sub-groups. Large social groups show visible hierarchy composed of a few primary groups and a number of task-focused secondary groups. We begin to see multiple 5 and 15 person groups operating inside groups of this larger layer.
  • Complex hierarchies: Huge impersonal groups have complex official hierarchies. Groups need official political and economic relationships in order to function.

Tips for supporting status

  • Tools for status signaling. The ability to signal hierarchy and status help larger organizations function. Titles, karma points, and visual flare are all systems that allow status to be earned and displayed.
  • Official reputation tracking. For huge impersonal groups, we see the emergence of strong anonymity, reputation starts to be more important than actual skill competence and parity. At the 500 person layer, freeloaders and bad actors can more easily slip through the cracks, so official means of keeping tabs on someone’s reputation benefits group cohesion.

Social norm formation at different group sizes

Norm formation in social groups involves how a group determines the rules they operate by and how they communicate those rules.

Rule formation

Rule formation becomes increasingly formalized as group size increases.

  • Personally negotiated norms. Small friend groups negotiate rules on a one-to-one basis, usually through small group discussions. Often behavior is determined on a case-by-case basis depending on the person and the context.
  • Key decision makers. Large social groups follow the behavior of high-status individuals or leaders. One or more smaller, high-status groups make decision through consensus-building and then then share those decisions with lower-status individuals. In more equitable groups, simple voting systems appear.
  • Public rules. Huge impersonal groups use official legislative systems for setting or revising laws. They usually have formalized community feedback mechanisms. At this stage we see strong rule of law. In more organized groups, explicit rules become prevalent. By requiring that people work in a very specific, codified fashion, you remove uncertainty and increase the group’s ability to function. You’ve replaced the slow process of negotiating social norms, through in-person reciprocation loops, with rules that simply tell you how you should act. However, this comes with substantial downsides. These rules are inherently less flexible. They need to be written up, conveyed, and enforced. If the situation for such a group changes slightly, the existing rules may actually reduce efficiency. And there’s no real trust—all parties execute on a pattern and hope it works.


Communication shifts from reciprocation loops to broadcast as group size increases.

  • Personal conversation. Small friend group members will communicate frequently and in depth with all other members of the group. This communication is likely to be equally spread between all members and structured as peer communication.
  • Tiered communication channels. Large social groups have multiple tiered communication channels. There generally needs to be an open, shared channel; a one-way broadcasting channel from leadership; and a number of sub-group channels for specific primary and secondary groups.
  • Broadcast communication. In huge impersonal groups, personal communication simply cannot reach all the people in the many sub-groups, so these groups must use broadcast technologies to send one message to many people cheaply. This, in turn, enables propaganda, where various parties use broadcast media to push unquestioned messages that promote new truths. There’s no consent loop for someone to provide a contradictory response. This is useful for spreading new social norms about how one should behave or for emphasizing group bonds, but cartoon symbols of complex systems end up being easier to spread than deep understanding.

Conflicts and sanctions at different group sizes

What happens when norms are violated?

Small friend group

  • Personal disagreements. Small groups are constantly negotiating norms. Norm violations are typically confronted in small group conversation, one-on-one or with the whole group, and are essentially arguments.
  • Withdrawal from the group. In extreme cases, members of small groups will stop talking to someone with whom they have a personal disagreement, or the group will distance themselves from an individual by lowering the frequency of interaction with them.

Large social group

  • Cliques and bullies. Groups this size can form into abusive groups of bullies. Designing for groups this size means added community management. Groups of this size rely on vision-based leadership, which can allow hate groups and other fear-based organizations to fester.

Huge impersonal group

  • Demonizing outgroups. It is common for very large groups to explicitly label those who are enemies of the tribe. This is less about attacking the outgroup and more about focusing the larger group on a larger shared goal. The downside to this is it usually relies on fear, which short-circuits more thoughtful and constructive group coordination patterns.
  • Law enforcement. Tracking down those who break the laws and determining the best way to change their behavior is a feature of very large groups.
  • Economic scams. Groups emerge that profit from preying on people who want to get an economic edge. Various black market scams start to be common, like account and credit card theft. Outside groups target the community.
  • Organized griefing. Though individual griefers exist in smaller groups, within a larger population, a griefing tribe can satisfy all of an individual’s social needs. Griefing becomes the social norm for such people and there’s no leverage at any point in the network to deprogram a griefer. This can lead to all-out wars, where one group attempts to destroy, alienate, or otherwise expel a rival group.
  • Account manipulation. With a large number of strangers, it’s hard to track who is coming or going. In online games, people create extra accounts and use them for botting, muling, multi-boxing, and other techniques that are otherwise easily trackable in more intimate settings.
  • Internal corruption. As with nations, if a game becomes big enough, it is easy for moderators and community management to surreptitiously misuse their powers.

Game Design Insights

Considering the constraints imposed by friendships, Dunbar’s Layers, and social groups, it is worth exploring game design that is centered around natural human social scales. Human-scale design is social design that targets the 5, 15, 50 and 150 person egocentric networks and associated groups. It explicitly avoids player systems involving 500 or more players.

If you can build a human-scale game that enables a player to spend quality time with good friends, you’ll likely improve the quality of their life. While if you break these hard limits, you actively damage your game’s social systems. These social psychology models should do more than just inform our evaluation of game systems—they should be actively shaping the way we approach design.

Such an approach focuses on smaller, more intimate social design as the core of a game. It is less concerned with big numbers and infinitely scalable systems, and more interested in fostering trust and connection between players. This perspective led us to some fundamental insights concerning how we approach online game design.

Don’t build a big world first

A common pattern when designing an MMO is:

  1. First, imagine a big world
  2. Then, figure out what to fill it with
  3. Finally, create all the systems necessary to support all the stuff you’ve dreamed up

As a result, the final systems are often surprisingly complex. You’ve jumped directly into designing systems that need to handle the many issues associated with 500+ groups (i.e., your player population). Immediately, you are faced with the key problem that your world is just a large, empty area where a player sporadically meets strangers they don’t trust. As conflict inevitably arises from these low-trust interactions, the dev team toils to add a vast amount of bureaucracy to manage the poor player experience. It can feel like patching unending leaks in a poorly-placed dam.

In the best cases, like EVE Online, players create their own systems of crude governance to shore up the faulty social design. But for the majority of games, we see outcomes like The Sims Online, where mob-style groups grief new players and chase them from the game.

From a social design perspective, this process sets the team up with the hardest possible design challenges, essentially creating a lot of extra problems that then need to be solved. Focusing on designing for human-scale suggests a different approach:

  1. Define social activities. First, imagine activities/content/context for players to enjoy together. For example, you might prototype cooperative raid mechanics for a PvE MMO.
  2. Map out group sizes and trust level. Then, figure out what group sizes and levels of friendship best fit those activities. High-trust activities should be reserved for small groups of close friends in the 5, 15 and 50 layers. Low-trust activities can work for groups up to 150 in size, but not beyond. In fact, explicitly remove activities that involve more than 150 people. For our MMO example, you take your raid prototype and map out variations of the raid that are suited for high-trust small groups, low-trust small groups, and low-trust large groups.
  3. Build appropriate social support systems. Build systems that support the right activity for the right group size. With the MMO, you realize that your high-trust small group encounter needs high-bandwidth communication channels to execute, so you add voice chat or rich emotes—two possible communication channels that support and enable group performance.
  4. Scale the activity based off quality and quantity of friends available. Finally, organize the activities/content so that player groups can organically scale up and down. In the MMO example, a single player might be present and you’ll want to serve them up low-dependency, small-group content. But if a stranger appears, consider how the game might switch to a low-trust activity with parallel play? If several friends appear, how would the activity allow them to opt-in to a higher-trust (and higher-reward!) challenge?

This approach has the advantage of more closely mapping to how humans have grouped historically: in nested layers of families, tribes, villages, etc. Sticking closer to the natural shape of social grouping will make your group activities feel more familiar and facilitate social bonding. It will also allow you to apply lessons and best practices from psychology and anthropology more directly.

Social design drives retention and engagement

When game designers think of retention, we often first consider User Experience (UX). Using the logic of UX, if a developer builds a complicated core interaction that is difficult for a player to understand, most players will churn out early on. Such games should have poor early retention and struggle with new player acquisition.

However, the game industry has many counterexamples. Dwarf Fortress, Go Pets, and Dofus are three games renowned for their poor user experiences. They have weak tutorials, byzantine gameplay loops, and a general lack of traditional first-time user experience polish. By all traditional UX values, they should be failures, yet they are not.

While these games have poor UX, they also have strong social design. For example, Dofus is a game that is specifically popular in France. Its developers tried to expand its reach to other countries with limited success, for many of the aforementioned reasons.

What made France special for Dofus?

  1. Cultural event. When Dofus first launched, French-language MMOs were rare and early adopters were blown away by the novel experience.
  2. Basic virality failed. Players actively proselytized the game to friends, but their friends weren’t able to play as the game was too difficult to learn.
  3. High-cost transmission to close friends. So players went over to their friends’ houses, helped them install the game, and spent hours teaching them, in person, the nuances of how to play.

This was not intentional, but the result was that Dofus ended up being played predominantly by friends, many of whom were already part of each others’ 50, 15, and 5 person layers. This allowed players to build groups stocked up with high-trust compatriots and overcome the high-trust activities in the game. Succeeding at those challenging activities in groups of trusted friends gave the game incredibly high engagement.

A virtuous cycle occurs where strongly-bonded friends make a game their homebase—a safe, intimate space for acting out their friendship. In turn, those players recruit more of their friend networks into the game.

We’ve observed a similar process in other poor-UX, high-retention game examples. To be clear—poor UX is not the root driver for these games’ avid, high-trust communities. Instead, it is one of many pragmatic reasons for players to bring the inner circles of their friend networks into a game.

The reverse of the same basic process that drove the success of Dofus highlights problems with early Facebook-style virality. Such “social network games” would obsessively incentivize players to send out invites to as many people as possible. Two results occurred:

  • Mismatched reciprocation loop costs. Incentivized by these games, players made a low-cost overture to a friend or associate (an invitation) that required a high-cost response (registering for, and playing, the game). This is a huge no-no when acting out reciprocation loops; it actively damages a relationship by suggesting you are ready to extract value from your friend instead of building toward future shared need. That is to say, it annoys your friends and makes them question the value your relationship.
  • Dilution of community trust. Second, it brings low-trust people into the game. Because Facebook didn’t care about Dunbar’s Layers, especially in the early days of the social gaming boom, many users had social graphs with hundreds of “friends,” many of whom were no better than strangers. The low-cost overture to join was little better than a random spam ad and brought many of those random players into the game, diluting the level of trust for the community already inside the game. In one fell swoop, this greedy practice hurt retention, engagement, and future growth.

All of these examples highlight the basic truth that social design is deeply powerful, but is often not a first-order consideration for designers.

Use proper terminology

A very common confusion that came up many times during our discussions was the difference between friends, Dunbar’s Layers, group size, and concurrency (the number of players simultaneously logged in). These are all four distinctly different concepts, yet it is common for social designers to use them interchangeably.

Much of this is the fault of our existing terminology. When we talk about multiplayer games, a common shorthand is to say, “It’s a 16-player game.” We all know that this means there are 16 concurrent players in a match or room, but we often erroneously assume that this also means they are all friends and/or that they are all part of the same social group.

Both of these errors are a naive misunderstanding.

  • Concurrent players can be spread across multiple types of social groups. Some of them might be members of groups that are antagonistic to other sub-groups in the game. Some are members of multiple groups. Some form small sub-groups while others form large sub-groups.
  • They can have a mix of friendship bonds. Some of them may be friends. Most are likely total strangers.

In general, having 16 people online together says almost nothing about whether or not they are in a group, or what the strength of their relationships might be. It is tempting to fall back on old, inexact language, but your game will suffer. Instead, teach your design teams about friendship formation, constraints on types of friendship, trade-offs involved at different groups sizes, and the logistics of social play.

Use Dunbar’s Layers to determine the level of collaboration your audience will support

The structure of Dunbar’s Layers gives us insight into how many friends of a given trust level you can expect a player to have online at any particular time. There are logistical implications for matchmaking, events, and more.

At the most basic level, the logistics of Dunbar’s Layers help you predict the outcome of the following example:

  • You design a high-trust activity that requires 100 people.
  • But we know from Dunbar’s Layers that any human being will only have a maximum of 15 people in their life that have this particular level of trust.
  • You’ve created a logistics mismatch that will results in inevitable failure. And you didn’t even have to build the game, launch it into the market, and watch it fail. You just saved your team millions of dollars and years of their life!

However, we can gain more detailed insights. Here’s how you calculate the exact portion of a player’s friend graph you can actually address with your game. First, you’ll need a few pieces of information:

  • Share of social time
  • Concurrency ratio
  • Distribution of friends

Share of Social Time

Share of Social Time is the percentage of a player’s total time spent socializing that is spent inside your game. This corresponds roughly to the percentage of a player’s social graph that is active in the game.[13] If a player spends 50% of their social time in a game, we’d expect roughly 50% of their friend network is also in the game.

There are a couple ways of calculating this. Conservatively, we know from time-usage studies that the average American has approximately 5 hours of leisure time per day [14]. From this perspective, Share of Social Time equals Hours per Day Spent In Game / 5 hours.

However, less conservatively, we know that people tend to spend approximately 0.65 hours per day actually socializing. This is likely an underestimate since the time-usage studies don’t measure time spent socializing at work. Nor do they consider time spent in playing games [15] as socializing.

For the following calculations, we’ll use the conservative definition of Share of Social Time. For comparison, the heaviest players of Fortnite, around 8% of the player population, spend 3+ hours playing per day. That’s roughly 60% (or more) of an average American’s total leisure time.

Concurrency Ratio

Concurrency ratio is the ratio of monthly active players (MAU) to those currently online. Since synchronous activities require people to be present, it does us no good if you have friends in a game, but they aren’t actually playing.

A highly-social MMO will have a concurrency ratio of 10:1, so for every 10 MAU you’ll have 1 of those players online. An international phenomenon like Fortnite enjoys a 20:1 ratio, while many web-games are as low as 150:1 or 250:1.

Distribution of friends

Dunbar’s Layers suggests that our relationships map onto a very specific frequency distribution of friends.

Chart 1: Percentage of friend network layers present in the game

This distribution holds true only if we make several assumptions:

  • Long-term engagement. First, our game is a long-term activity which has been going on long enough that inner layers like intimate friends or best friends have grown in the game or have integrated pre-existing, external friendships. If a game is new or people have been playing for less than 200 total hours [10], you’ll see this distribution shift towards casual friends and strangers.
  • Sufficiently large cohort. The total population of monthly active players is at least 1500.
  • Support for all layers. If your game doesn’t have all appropriate social mechanisms for any given layer—such as the need at the 5 person layer for private locations/communication to facilitate safe disclosure—that layer will be less represented.


We can use Share of Social Time, Concurrency, and distribution of friends to calculate some useful information about our game.

Let’s say you have a highly engaging MMO:

  • Share of Social Time: 50%
  • Currency ratio: 10:1

How many friends will be in the player’s friend list? Given the standard distribution of friends, 50% of that player’s social network will be present in your game. With a total of 150 friends that means there will be 75 friends playing the game.

How many friends will be online right now? Of those 75 friends in the game, due to the concurrency ratio, only 10% (7.5 friends) will be on at any point in time, on average.

What type of friends will be online right now? Using the distribution of friends in various layers from the chart above and multiplying them by the total friends online, we can expect the following distribution of friends:

  • Casual friends: 5
  • Good friends: 1.8
  • Best friends: 0.5
  • Intimate friends: 0.3

This sort of calculation puts much harder constraints on the types of activities that we can build into our game. Note that this is a best-case scenario. A highly-social MMO with great concurrency, and a player with a fully-engaged friend network. In this best-case situation you are lucky to get a single good friend playing alongside you. You will however get a few casual friends.

This suggests that the core activity of even highly-social games with long-term, highly-invested players should predominantly be target low-to-moderate trust activities involving 5-7 players.

What does this distribution look like at different cohort sizes? Using the same logic, you can see what friend distributions would look like at various fixed populations of active players.

Chart 2: Max and Average number of friends an individual will have for various cohort sizes in a game with 50% share of social time and 10:1 concurrency.

Due to the logistics of concurrency ratios and Share of Social Time, we max out the number of friends online at around 1500 people in a cohort. Simply having bigger cohorts doesn’t improve friend concurrency.

How can we improve these numbers?

The previous calculations are just an average of the sort of friends you can expect online. By shiftings a few variables around, we can create much higher densities of friends.

  • Events. A timed event or a scheduled boss raid spikes the number of people online and can dramatically reduce the concurrency ratio. If you can drop the concurrency ratio to 2:1 with an event, then you have upwards of 12 friends and 4 good friends playing. This shift is one reason why events like boss raids can be high-trust events.
  • Asynchronous Activities. Activities that people can do when others are offline allow for more people to be involved. Some asynchronous activities can reduce the concurrency ratio to the equivalent of 1. These systems have the downside of dramatically slowing down reciprocation loops by reducing communication bandwidth, so building out a full friendship network may take longer for players.
  • Recruitment. Given the low engagement of the innermost friendship layers due to simple logistics, it is unwise to rely on close friends naively playing the game together. Invest in systems that actively encourage players to play with loved ones. Give them tools for scheduling these activities.

Relationship design as systems design

By translating fuzzy social psychology concepts into more mechanical concepts, we can start treating social design as a form of systems design. (Some may find the term ‘social systems design’ more palatable than ‘social game design’ after dealing with the horrors of Facebook.)

In particular, social design benefits from using the internal economy perspective, where relationships are modeled as resources and transformations on those resources.

  • Each relationship between two individuals is a pool. A pool is a container that accumulates resource tokens.
  • Successfully completed reciprocation loops is a source that produces a resource called social capital that accumulates in each relationship pool.
  • Rejected or unequal reciprocation loops are a sink that depletes social capital. As does distance and lack of contact over time.

Dunbar’s Layers act as a cap on the maximum number of each level of relationship you might have. When a relationship pool fills up in one of the outer layers, it may transform into a new pool in one of the inner layers. However if the inner layers are full, one must give. If any of the layers are empty, the player seeks actions that fill them.

This paints the process as rather cold and transactional. In practice, this type of design drives intense emotions. Losses of social capital yield strong negative emotions, while gains generate positive emotions. Rate of lose or gain will dramatically intensify the emotional response. If your goal is to make players laugh, cry, or otherwise experience the peak of what it means to be human, build strong social systems.

Minimize designs that require huge impersonal groups

When we develop a game that involves group sizes of 500 and 1500 people, we’ve created populations beyond the human brain’s ability to understand other people through personal relationships. Our players know nothing about most other individuals, as they are incapable of building a large-enough social network to understand the whole. Instead, they must rely heavily on rules and heuristics to govern their interactions, and we, as game designers, are on on the hook to provide those structures.

By simply upping the size of our community, we’ve introduced an immense design challenge. We now need to build systems to manage crime, corruption, economic complexity, classism, racism, and more. Suddenly, our games exhibit most of the ills of modern society and the burden is fully upon us to solve them. If we don’t conscientiously address these issues, our community collapses into a hellish online dystopia.

If you care about maximizing social impact while minimizing scope:

  • Consider building communities of 50–150 players. This will maximally leverage strong bonds for retention and engagement.
  • Use instancing to ensure that your game can support a massive population even though each community is self-contained. Games like Minecraft; Don’t Starve Together; old, instanced MUDs; and numerous other small community games suggest this strategy can be both financially successful and fulfill social design goals.
  • If you want to create larger communities, try limiting yourself to cohorts of 500–1500. There are no other systems larger than these values that are meaningful on a relationship level, and by creating larger populations, you dilute and harm existing social bonds.
  • When creating groups of 500–1500, leverage your instanced groups of 50 and 150. Create a few low-scope systems that allow weak ties between strongly-bonded friend groups. Trade networks and information exchange will be among the highest-value systems to invest in.

Opportunity: Serving Player Motivations

Games that thrive are almost always ones that satisfy a strong audience motivation. This is no different for social games and social features. Dunbar’s Layers, in particular, give us a structure for understanding the player’s social motivations.

The Belongingness motivation

“The belongingness hypothesis proposes two main features. First, people need constant, positive, personal interactions with other people. Second, people need to know that their bond is stable, there is mutual concern, and that this attachment will continue.”

You can think of the various relationship layers as a slots in a list. Everyone has space for about 5 intimate friends, 10 best friends, 35 goods friends and 100 casual friends. If those slots are filled with healthy, mutually-beneficial relationships, a person is reasonably happy.

However if any of those slots are empty, people have a strong desire to fill them in. When they don’t have those slots filled they tend to be unhappy, and, in response, will seek the company of others using several key strategies:

  • Deepen bonds with existing friends. This is done in order to fill inner layers of the friendship network.
  • Meet new people. This is done in order to fill outer layers.
  • Become a member of a group. Often belongingness will be combined with a desire for affiliation. By becoming part of a social group, it becomes substantially easier to both meet new people and quickly deepen friendships. Think of group membership as a bonding multiplier. It is easy to get caught up in group affiliation as an end, by itself, but remember that, ultimately, people join groups not for the sake of the group, but to fill gaps in their primary friend network.

The desire to form relationships waxes and wanes

Life events are predictive of gaps in a person’s friendship network. As new people show up in a person’s life, there’s less time for activities that require making new friends.

  • Entering a new intimate relationship or marriage. This fills an inner-layer slot. There’s also the inevitable shifting and merging of your two friend groups.
  • Having a child. This also fills an inner-layer slot. All that time spent in parenting groups often shifts friendships from your single friends over to other parents with kids just like you.
  • Getting a new job. This can fill any number of slots in several layers as you form new work relationships.
What loneliness looks like in a thinned-out network

There are also numerous events that thin out a person’s network.

  • Becoming unemployed. You lose work relationships.
  • Retiring. This is similar to becoming unemployed, but often you lose professional associations as well.
  • Breaking-up or divorce. One of the more intense losses of an inner, highly-intimate bond. As well as a weakening of all the shared relationships (closed triadic relationships in your networks).
  • Moving. Shifting many high-intimacy friends into outer layers. Can break existing friendships and free up slots. Research suggests it generally doesn’t destroy intimate family bonds.
  • Kids moving out. When kids go off to college, most parents end up losing key members of their inner circle.
  • Becoming elderly. There’s a slow erosion of existing friend networks as people move or die. Elderly are also are less mobile and thus struggle to meet new people.

In particular, there seem to be three major periods in which loneliness spikes: Late 20s, mid 50s and late 80s. During these times one study reported as many as 75% of people report being lonely. These values hold across genders. Providing these individuals with tools for building healthy relationships would be immensely beneficial to society.

Two social game design opportunities

All of this suggests opportunities for social game design to improve the lives of our players.

  • Games for friends. High-trust games should target those with free time and strong, existing friend networks. The design focus is on bringing those friends into the game.
  • Games that help make friends: Games that deliberately try to convert strangers into better friends should target groups that have gaps in their social network. For example, one demographic might be lonely 50-65 year old men who are seeing an erosion of their social network due to unemployment, kids moving out, and fewer opportunities to find new friends. Make a game that is the modern version of a Masonic Lodge.

Both opportunities could be served by the same game, but be sure to sort incoming players based on their needs and direct them into activities that satisfy those identified needs.


The big idea

Key discoveries in social psychology place hard limits on the types of social games we can build.

  • Friendship research shows meaningful in-game relationships require conditions such as proximity, similarity, reciprocity, and disclosure
  • Dunbar’s Layers research shows that players have hard limits on the number of meaningful relationships in their life. These friendship are organized into layers of increasing size and decreasing intimacy.
  • Social group research shows the need for increasingly complex support structure as group size grows

These are the physics that social designers must understand and build into their designs.

The trap

Many past designs ignored Dunbar’s Layers and naively assumed “more is better.” They ignore friendship formation and assume “it just happens.” They ignore social groups and arbitrarily mash players together.

In reality, these assumptions are actively harmful and cause the following:

  • Fewer in-game friendships. A flood of strangers swamp the reciprocation and proximity mechanisms that generate friends. Poor identity, persistence, reciprocity, and consent systems mean these strangers never convert into friends, so there are fewer meaningful relationships in the game.
  • Increased toxicity. Large groups of strangers naturally breed toxic sub-groups. Players engage in violent rejection of out-groups in order to protect their experience and intergroup conflict becomes the cultural norm. Such communities are hard to reform and poison long-term retention.
  • Scope creep. The additional systems necessary to manage large groups of strangers substantially increase the scope of your game.

What players need

If players have not filled all the slots in their primary friend network, they suffer. And, in response, they are intrinsically motivated to deepen their existing relationships or build relationships with new people. Striving for belongingness is one of the strongest human motivations. They will naturally seek out activities that help them make friends and belong to something bigger than themselves.

The opportunity

If your games help build relationships for the player in any of their inner layers, you’ll accomplish a couple key benefits:

  • Increase retention and engagement. Your game becomes the place where people attain their desires. Since you provide immense value, they make the game a key part of their lives.
  • Improve the lives of your players. They’ll experience less depression, better health, and have more robustness in the face of negative life events.

Best practices

If we take all the insights gleaned from research into group psychology, examples from online game design, examination of Dunbar’s Layers and social motivation—all of it into consideration, we can arrive at several, strong best practices:

  • Build games for smaller cohorts. The base activities should target small, collaborative groups. Large groups of close friends are rare or, in many cases, mathematically impossible.
  • Cluster players into persistent, high-density cohorts. So they have repeat interactions with the same players. The more reciprocation loops that are completed, the stronger the friendships. Big, empty spaces are not a positive feature.
  • Encourage high-concurrency events or asynchronous activities. Logistics favor players being around to interact with their friends. Having friends playing the same game doesn’t matter if you never see them.
  • Aim for long-term engagement. Build a game where players are engaged for hundreds of hours, so they have enough time to build deeper friendships. It takes at least 50 hours of interactions to form a basic friendship.
  • Attract existing friends, if possible. Existing friends from the strongest foundation for your game community, especially when first launching your game. Put people into safe, guild-like structures and encourage them to bring in their friends.
  • Design for climbing the trust spectrum. When introducing strangers into your game, build low-trust activities that scale into high-trust activities. Start with parallel or single-player gameplay and allow players to opt-in to higher-dependency activities. If players start forming strong friendships in game, support them. Bring those relationships into safe places with tools for enabling consent, support, and disclosure.

Final thoughts

As ethical game designers, we should strive towards some higher purpose beyond merely extracting money, time, and energy from our players. Building friendships and providing lonely people with human connections are goals worthy of our highest-quality work.

If you are working on a multiplayer game, ask yourself how your designs help build social capital with and among your players. If you encounter people who believe that “more is better” when it comes to building social systems, we recommend you send them this report. There’s a new wave of social game design inspired by lessons from social psychology and we are immensely excited to be part of it.


[1] Active MUD communities. Examples include, as of the time of this writing (December, 2018): Achaea, Dreams of Divine Lands (1997-present); Aardwolf MUD (1996-present); GemStone IV (1988-present); Realms of Despair (1994-present); and Threshold RPG (1996-present)

[2] Dunbar’s Layers. “Generally speaking, humans each have one to two special friends, five intimate friends, 15 best friends, 50 good friends, 150 “just” friends and 500 acquaintances. Our relationships form a series of expanding circles of increasing size and decreasing intensity and quality of the relationship.”
Woodward A (2017) With a Little Help from My Friends. Scientific American. Retrieved December 27, 2018, from

[3] Dunbar’s Number. “The figure of 150 seems to represent the maximum number of individuals with whom we can have a genuinely social relationship, the kind of relationship that goes with knowing who they are and how they relate to us. Putting it another way, it’s the number of people you would not feel embarrassed about joining uninvited for a drink if you happened to bump into them in a bar.”
Dunbar R (1998) Of Brains and Groups and Evolution. In Grooming, Gossip, and the Evolution of Language (pp. 80-105). Retrieved December 26, 2018, from

[4] The 50 Person Layer. “Thus, 50 individuals may represent a natural social grouping (in the world of personal social networks, it is the set of individuals that provides the bulk of one’s regular social contacts and all of one’s emotional and economic support…)”
Kordsmeyer T, Carron P, Dunbar R (2017) Sizes of Permanent Campsite Communities Reflect Constraints on Natural Human Communities. Current Anthropology, 58(2), 289-294. Retrieved December 26, 2018, from

[5] Unequal dyadic bonds. “When analyzing self-reported relationship surveys from several experiments, we find that the vast majority of friendships are expected to be reciprocal, while in reality, only about half of them are indeed reciprocal.”
Almaatouq A, Radaelli L, Pentland A, Shmueli E (2016) Are You Your Friends’ Friend? Poor Perception of Friendship Ties Limits the Ability to Promote Behavioral Change. PLoS ONE 11(3): e0151588.

[6] Loneliness impacts longevity. “…individuals with adequate social relationships have a 50% greater likelihood of survival compared to those with poor or insufficient social relationships. The magnitude of this effect is comparable with quitting smoking and it exceeds many well-known risk factors for mortality (e.g., obesity, physical inactivity).”
Holt-Lunstad J, Smith T, Layton J (2010) Social Relationships and Mortality Risk: A Meta-analytic Review. PLoS Med 7(7): e1000316.

[7] Friendship impacts life satisfaction. “…the results indicate that both having/meeting friends and good-quality friendship relations are important to an overall life satisfaction.”
Amati V, Meggiolaro S, Rivellini G, Zaccarin S (2018) Social relations and life satisfaction: the role of friends. Genus, 74(1), 7.

[8] Friendship reduces depression. “People who have close friends and confidants, friendly neighbors and supportive co-workers are less likely to experience sadness, loneliness, low self-esteem and problems with eating and sleeping. Indeed, a common finding from research on the correlates of life satisfaction is that subjective well-being is best predicted by the breadth and depth of one’s social connections.”
Helliwell J, Putnam R (2004) The social context of well-being. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359(1449).

[9] Toxic relationships impact health. “…individuals who experienced negative aspects of close relationships had a higher risk of incident coronary events….”
De Vogli R, Chandola T, Marmot M (2007) Negative Aspects of Close Relationships and Heart Disease. Arch Intern Med, 167(18), 1951–1957.

[10] Friendships cost time to build. For more details, see:
Hellman, R (2018) How to make friends? Study reveals time it takes. KU News Service. Retrieved December 19, 2018, from

[11] Social media doesn’t expand our friendship capacity. “The fact that social networks remain about the same size despite the communication opportunities provided by social media suggests that the constraints that limit face-to-face networks are not fully circumvented by online environments. Instead, it seems that online social networks remain subject to the same cognitive demands of maintaining relationships that limit offline friendships.”
Dunbar R (2016) Do online social media cut through the constraints that limit the size of offline social networks? Royal Society Open Science, 3(1).

[12] Intimate relationships best predict health. “…the presence of an intimate relationship (as opposed to a broader social network) [has] the greatest effect on explaining variance in depressed mood.”
Roberts S, Arrow H, Gowlett J, Lehmann J, Dunbar R (2014) Close Social Relationships: An Evolutionary Perspective. In R Dunbar, C Gamble, J Gowlett (Eds.), Lucy to Language: The Benchmark Papers (pp. 151-180). Oxford: Oxford University Press.

[13] How investment shapes social graph distribution. “the strength of a tie is a (probably linear) combination of the amount of time, the emotional intensity, the intimacy (mutual confiding) and the reciprocal services which characterize the tie”
Granovetter M (1973) The Strength of Weak Ties. American Journal of Sociology, 78(6), 1360-1380. Retrieved December 28, 2018 from

[14] Available leisure time. The average American woman spends roughly five hours per day on leisure activities (35 hours per week), while the average American man spends about 5.5 hours per day (38.5 hours per week).
Bureau of Labor Statistics, U.S. Department of Labor (2018) American Time Use Survey — 2017 Results. Press Release for the Bureau of Labor Statistics. Retrieved December 20, 2018, from

[15] Why are people socializing in games? “On the face of it, this may seem like a sad state of affairs. It could even be read as dystopian: people are escaping real life to be in virtual worlds. People often find community within gaming worlds, and may get a heightened sense of shared experience from competing against or teaming up with people across the world who share their interests. In some cases, these connections might even be more valuable than, say, gossiping with a neighbor.”
Kopf D (2018) Americans are socializing less and playing more games. Quartz. Retrieved December 28, 2018, from

Other References

Bura S (2008) Emotion Engineering in Videogames. Retrieved December 28, 2018, from

Casari M, Tagliapietra C (2018) Group size in social-ecological systems. Proceedings of the National Academy of Sciences, 115(11), 2728-2733.

Cook D, (2018) Game design patterns for building friendship. GDC 2018. Retrieved December 28, 2018, from

Cook D, Bialoskurky Y, Fulton B, Fitch M, Gonzales J (2016) Game design patterns that facilitate strangers becoming “friends”. Project Horseshoe. Retrieved December 19, 2018, from

Dormans J, Adams E (2012) Game Mechanics: Advanced Game Design (Voices That Matter). San Francisco, California: Peachpit

Dunbar R, Sosis R (2018) Optimising human community sizes. Evolution and Human Behavior, 39(1), 106-111.

Dunbar, R (1993). Coevolution of neocortical size, group size and language in humans. Behavioral and Brain Sciences, 16(4), 681-735. Retrieved December 28, 2018, from

Glaeser E, Laibson D, Sacerdote B. (2002) An Economic Approach to Social Capital. The Economic Journal 2002, 112(483), F437-F458. Retrieved December 28, 2018, from

Group Cohesiveness. In Wikipedia. Retrieved December 28, 2018, from

Hall J, Davis D (2016) Proposing the Communicate Bond Belong Theory: Evolutionary Intersections With Episodic Interpersonal Communication. Communication Theory, 27(1), 21-47. Retrieved December 28, 2018, from

Interpersonal Ties. In Wikipedia. Retrieved December 28, 2018, from

Koster R (2003) Small Worlds. Retrieved December 28, 2018, from

Koster R (2018) The Trust Spectrum. Retrieved December 28, 2018, from

Lee E, Depp C, Palmer B, Glorioso D (2018) High prevalence and adverse health effects of loneliness in community-dwelling adults across the lifespan: role of wisdom as a protective factor. Cambridge Core.

Marvin R (2018) Fortnite by the Numbers: How Many Hours Are You Playing Each Week? PC Magazine. Retrieved December 20, 2018, from

Moai (social support groups). In Wikipedia. Retrieved December 28, 2018, from

Putnam R (2000) Bowling Alone: The Collapse and Revival of American Community. New York City, New York: Touchstone Books by Simon & Schuster

Sandstrom G, Dunn E (2014) Social Interactions and Well-Being: The Surprising Power of Weak Ties. Personality and Social Psychology Bulletin, 40(7). Retrieved December 28, 2018, from

Shen C, Chen W (2015) Social capital, coplaying patterns, and health disruptions: A survey of Massively Multiplayer Online Game participants in China. Computers in Human Behavior
Volume 52, November 2015, Pages 243-249 

Social Cohesion Approach. In Wikipedia. Retrieved December 28, 2018, from

Tamarit I, Cuesta J, Dunbar R, Sánchez A (2018) Cognitive resource allocation determines the organization of personal networks. Proceedings of the National Academy of Sciences, 115(33), 8316-8321.

Depp C, Palmer B, Glorioso D, Daly R, Liu J, Tu X, Kim H, Tarr P, Yamada Y (2018) Serious loneliness spans the adult lifespan but there is a silver lining: Feeling alone linked to psychological and physical ills, but wisdom may be a protective factor [Press release]. Eureka Alert. Retrieved December 28, 2018, from–sls121218.php

Williams, D. (2007). The impact of time online: Social capital and cyberbalkanization. CyberPsychology & Behavior, 10(3), 398–406.

Cozy Games

comments 10
Ported Posts / Uncategorized

For this year’s Project Horseshoe, an annual game designer think tank, our workgroup dug deep into how to design cozy games. What a productive, happy group of people! You can read the other reports here:

Our group consisted of:

  • Tanya X Short
  • Anthony Ordon
  • Dan Hurd
  • Chelsea Howe
  • Jake Forbes
  • Squirrel Eiserloh
  • Joshua Diaz
  • Daniel Cook
  • Ron Meiners: Moderator


Coziness is a common aesthetic in popular games such as Animal Crossing or Stardew Valley, yet it rarely discussed within design circles. Our group of designers did a deep dive to understand:

  • What is ‘Cozy’?
  • How do we make our games more cozy?

What we found during our exploration:

  • Coziness is an ingredient that can applied to a wide variety of both casual and core genres.
  • Coziness can help your game appeal to broader audiences.
  • Coziness helps retention by giving players control over pacing while still maintaining engagement during periods of rest.
  • Coziness is a subversively humanizing design practice in a society built on monetizing base animal needs.

1. What is Cozy?

Definition of Coziness

Coziness itself refers to how strongly a game evokes the fantasy of safety, abundance, and softness.

Safety: A cozy game has an absence of danger and risk. In a cozy game, nothing is high-risk, and there is no impending loss or threat. Familiarity, reliability, and one’s ability to be vulnerable and expressive without negative ramification all augment the feeling of safety. To maximize safety, activities should be voluntary and opt-in so that players never feel the threat of coercion.

Abundance: A cozy game has a sense of abundance. Lower level Maslow needs (food, shelter) are met or being met, providing space to work on higher needs (deeper relationships, appreciation of beauty, self actualization, nurturing, belonging). Nothing is lacking, pressing or imminent.

Softness: Cozy games use strong aesthetic signals that tell players they are in a low stress environment full of abundance and safety. These are gentle and comforting stimulus, where players have a lower state of arousal but can still be highly engaged and present. There’s often an intimacy of space and emotion, with a slower tempo pace and manageable scope (spatially, emotionally, and otherwise). Soft stimuli implies authenticity, sincerity, and humanity.

Fulfilling needs

Two models helps us understand how coziness yields meaningful gameplay.

First, we see play as a form of safe practice: People play because it allows them to experiment with a particular set of skills and activities that would otherwise be expensive or impossible in the real world. The opportunity to fight off attackers might not exist in a person’s day-to-day desk job, but a game lets them practice those skills safely and easily.

Second, we see games as a means of satisfying unmet needs: The human animal is motivated to fulfill various needs. For example, when we get hungry, we are motivated to find food and eat. Players seek to fulfill their emotional and psychological needs within games. Each game genre taps into a highly specific set of motivations. For example a survival game such as ‘Don’t Starve’ is very upfront about the fact that it, mechanically and thematically, let’s player explore the planning and tactical issues around getting food.

This ties back into play as practice. In Don’t Starve, you obviously are not being rewarded with actual food. But we are still immensely motivated to practice that associated skills if we are subconsciously worried about survival.

So as a designer, it is incredibly important to understand what motivations your players are pursuing and how your game design helps them practice mastery related to their needs. This design process is at the heart of making an engaging game.

Cozy games help player practice fulfilling higher order needs: Cozy games also fulfill player needs. However, unlike a game like Don’t Starve which focuses on base needs like starvation, cozy games creates spaces for higher order needs like mastery, self-reflection and connectedness.

Consider Maslow’s Hierarchy of Needs. At the bottom are pressing needs like thirst, hunger and safety. When these are present, they immediately grab the limited attention of the player and deprioritize those higher order needs. It is impossible to have a quiet conversation on a difficult subject while being attacked by a bear.

Maslow’s hierarchy of needs as it relates to coziness

Cozy games give players space to deal with emotional and social maintenance and growth. Players don’t need to worry about the high stress, immediate trials of mere survival and can instead put their attention towards the delicate work of becoming a better person.

Covey’s Time Management Grid, 7 Habits of Highly Effective People.

We can think of this also from the perspective of time and attention management. In Covey’s time management, tasks can be categorized along two axis: Urgent to Not Urgent and Important to Not Important. When people manage their time, there’s a natural tendency (in alignment with Maslow’s Hierarchy) to focus on Urgent tasks. Games in particular excel at filling the player’s time with Urgent but not very Important activities. Cozy games are designed to focus the player on Not Urgent yet Important tasks that are unfortunately deprioritized.

Admittedly, Maslow’s Hierarchy of Needs and Covey’s Time Management Grid are older motivational models, but the same key insight can be recontextualized in terms of the newer Self Determination Theory (SDT). SDT proposes that people thrive when they are able to pursue intrinsic motivations such as Autonomy, Competence and Relatedness. They stop thriving when they are presented with extrinsic motivators that suck up their attention. Not surprisingly, many of the factors identified by Maslow and Covey are powerful extrinsic motivators that disrupt a player’s healthy prioritization of needs.

Negating Coziness

The process of negating coziness: Because many common game mechanics are derived from satisfying lower order needs, it is very easy to accidentally disrupt the player’s feeling of coziness. If a system brings about a strong lower order need, the player’s attention will immediately shift to deal with the more pressing issue. High priority, low order needs get dealt with first; that’s just how humans prioritize. When this happens, coziness evaporates.

Factors that negate coziness include:

  • Extrinsic reward: Almost any form of extrinsic reward generates a pressing transactional short-term need.
  • Danger, fear, threat: Any sense of impending danger triggers biological responses in the player. Their sympathetic nervous system kicks, adrenaline floods the body, and memory suffers. Often times, cozy spaces are presented as reprieve or refuge from these dangers.
  • Responsibility: Responsibility requires emotional labor: the effort to plan, think, and execute on a plan to resolve something. Being responsible generates high priority need/expectation. Examples include any form of mandatory maintenance, needy pets, companions, or entities that require constant, non-optional care.
  • Unpleasant distractions: Distractions such as notifications, sudden noises or nagging remove a player’s autonomy over their focus. Their agency around being able to explore and appreciate a game in their own way is lost. Distractions also demand attention, generating a need.
  • Intense stimulus: Anything sudden, disproportionately bright or loud, or invasive/proximal can diminish the feeling of coziness.
  • Distance: Vast spaces eliminate a sense of safety by being unknowable. However, it is still possible to create very subtle or natural thresholds that establish a cozy space within the context of something broad: like a campfire in the middle of a wood.
  • Phobia sources: Anything commonly associated with a phobia, such as spiders, guns, or knives, can suggest harm or threat. This can be mitigated by context: for instance, the presence of a knife in order to cook or perform other nurturing activities, especially if it cannot be used for violence.
  • Non-consensual social presence: Anything non-consensual removes a player’s feeling of safety, but this is especially relevant in social situations. An uninvited presence can feel threatening, or just suggest an unsought expectation of interaction, reciprocation, or responsibility.
  • Confinement: Many small spaces are considered cozy since you can quickly inspect them to see if you are safe. But, this sort of coziness requires choice, and in turn inescapable small spaces can instead be seen as claustrophobic and controlling. A prison cell is generally not cozy.
  • Deception, betrayal, lies, insincerity: These forms of social masking create doubt and apprehension about social interaction, turning them from fulfilling and need-satisfying experiences into threatening and dangerous ones.
  • Opulence, pretentiousness, “fanciness”: Most cozy spaces veer somewhat more mundane than pretentious or opulent. On the one hand, fanciness can often create social comparison pressure, or come off as insincere, diminishing social safety. On the other hand, most opulence lacks the familiarity that often contributes to a feeling of safety.

An example of negating coziness: Consider the omnipresent pop-up, especially as it is used in a normally cozy franchise like Animal Crossing: Pocket Camp. When a notification intrudes on your gaming experience, it uses intense stimuli (noise, vibration, movement, colors) to generate a need that must be dealt with. You have a new responsibility to deal with the message by either investigating it further or manually dismissing it. It is almost always non-consensual since you never explicitly agreed to have your life interrupted by that pop-up in this particular moment. The theoretical opt-in that occurs at the systems level is more rote than intentional. If unwanted, a notification becomes a distraction. In order to extrinsically motivate the user to act as desired, notifications often use the promise of rewards, the threat of a lost opportunity, and marketing spin to deceive the user into interacting.

It is absolutely possible to design consensual notifications that provide cozy value to the player, but most do not and will slowly poison a cozy atmosphere.

Using contrast to enhance coziness: These same negating elements can be used to enhance coziness if they are safely outside the player’s defined cozy space (spatial, emotional, etc) by providing contrast and juxtaposition. For example, cold rain against a window emphasizes the warmth of a reading nook without threatening to disrupt it. If that same cold rain was blowing through a broken window, the scene would no longer be cozy.

Cozy-Adjacent: Overlapping But Not-Cozy

Coziness overlaps with several different aesthetics and themes, but has a unique identity separate from the following:

  • Cute: While cuteness resonates with the safety aspect of coziness, as well as the desire to nurture/satisfy needs, many threatening and needy things can be cute without providing coziness.
  • Childlike: In a similar vein, childlike games are often safe, but can have very high levels of stimulus and often lack the ability to focus on higher level needs.
  • Small World: Many small world games have a very manageable scope and smallness that generates a cozy feel, but small worlds can also be threatening, needy, or intense.
  • Romance: Cozy spaces often facilitate intimacy and a deepening of emotional connection, but romance opens a field to any number of aggressive or risky social encounters.
  • Home: Homes are familiar, but often stressful or full of responsibility, which negates coziness.
  • Party: While generating a cozy connective social tissue between players, parties are often high stimulus and high intensity, negating coziness.
  • Politeness: When politeness is thoughtful and kind, it can be cozy, but politeness can also be taken to an extreme, becoming insincere or passive-aggressive, which is anti-cozy.
  • Wealth: While wealth allows for the satisfaction of basic needs, it is not in and of itself cozy, and culturally can also come with societal expectation/responsibility of accumulating additional wealth.

2. Why Make Cozy Games

There’s an inherent joy to making games that help players explore their higher order needs. It feels good to help others.

However, there are also distinctly practical benefits.

  • Create blue ocean games for untapped psychographics
  • Increase retention by minimizing churn
  • Attract a better community

Blue ocean products for unmet player motivations

Games are a product that serves a player need. By uncovering unmet player motivations we can invent new product categories or broaden the appeal of existing designs.

Old motivational models: Many older game designs use pop-science motivational paradigms that are biased towards western, individualistic, and masculine perspectives. In many case, the underlying psychological models were derived by either sampling only young college aged men, animal experiments, or by actively throwing out data from groups that didn’t fit a particular hypothesis. From a business perspective, they fail to robustly describe motivations of women, people from non-western countries, older adults, or people with children.

  • Fight or flight: Derived predominantly from electroshock tests on young male rats, this theory says that when our sympathetic nervous system kicks in due to a perceived threat, we will either attack or run away. Though this reaction does exist, humans seem to have a far richer set of behavioral responses not captured in this theory.
  • Zero sum economics: In this model, resources are highly limited and if I take a resource, you lose that resource. There’s a long history of match-based competitive games such as Chess or Soccer derived from zero-sum systems. However, economics as a whole is based primarily on trade transactions that generate value for both parties. Even more concerning, most relationship-based transactions, the basis of friendship and human culture, are non-zero sum.
  • Gamers as competitors: For many years, game definitions in stuffy text books included clauses that stated games were inherently about competition. The assumption was that people who enjoyed games predominantly enjoyed competition. We know from Nick Yee and company’s work that competition as a motivator peaks in young men around 19-20 and then falls off gradually. By age 30, it is one of smaller motivational forces.
  • Gamers are best motivated by extrinsic motivators: Pop game design sometimes talks about players as coerced robots who respond to automatically to variably reinforced dribbles of extrinsic rewards. Again, these experiments were done on highly stressed out animal subjects. When similar experiments are done on low-stress, happy humans, we get a much wider range of responses; many addictive tendencies go away. In materially and emotionally plentiful environments, rote or self-destructive behavior is replaced by enriching pro-social human behavior.

Newer models: Newer models such as Tend and Befriend or Self Determination Theory describe a broader, more diverse set of player behaviors and motivations. We are also realizing that not all people go through life as if they are rats reacting to electric shocks. Contemporary psychology is rediscovering the benefits of rich, contemplative environment that lets humans thrive.

  • Tend and Befriend: This theory suggests many humans are motivated to bond with one another for safety and strength. We want to spend time preparing together against the uncertain future. We care for those that are weak or injured and find this just as important as hedonistically caring for yourself. These motivations are the exact opposite of dog-eat-dog, fend-for-yourself gameplay.
  • Self determination Theory: As we covered above, people are intrinsically motivated to pursue Autonomy, Competence and Relatedness. It turns out people are much happier, much more willing to stick around, and much more willing to invest themselves when they aren’t coerced via extrinsic rewards.
  • Quantic Foundry’s motivation profiles: After survey over 300,000 game players, this group found six main motivational categories such as Action, Social, Mastery, Achievement, Immersion and Creativity.

Cozy designs are a natural way to address these newly uncovered needs. In particular they seems to do the following:

  • Create non-coercive spaces with a strong focus on intrinsic motivations. Not surprisingly cozy games all tend to have extremely strong player agency.
  • Allow for players to pursue quieter forms of connectedness and personal mastery.
  • From Quantic Foundry’s motivations, creativity and completion are served well by a cozy game like Animal Crossing. (

Increase retention by reducing churn triggers

Players are willing to play beyond satisfying their core motivations. If mechanics fall on a spectrum of motivating to neutral to demotivating, most players will happily enjoy a game compromised of motivating and neutral mechanics. Demotivating mechanics (or aesthetics) are the most likely to disengage players and cause churn.

Coziness reduces these drop-off points via an absence of harsh, demanding, and needy motives. These worlds inherently are low stress, low disappointment, and therefore less likely to have explicit churn triggers.

Improve community relations

Players who seek out comfy games are not usually looking for conflict or stressful interactions. This may seem self evident, but it has a huge impact on community relations.

An anecdote shreds some light. Spry Fox ran two games with two very different communities. Realm of the Mad God was a permadeath MMO and Alphabear is a cozy, cute word game. The players in Realm of the Mad God met most typical MMO player stereotypes, with a tendency to become quite angry with both developers and one another. Much of this was due to the structure of the game, which created high stress moments of desperate survival and crushing loss. Alphabear on the other hand was mostly composed of highly literate, polite players who wanted nothing more than to play their game, collect cute bears and share witty comments.

There’s a simple process at play here:

  1. Mechanics generate emotions: The game mechanics you design create certain types of player situations that match various motivational needs and in turn trigger emotional reactions.
  2. Emotions attract players: Players that want specific emotions seek out games that produce them.
  3. Social norms spread: In multiplayer contexts, players will watch one another and adopt shared social norms based off how people are reacting to the game. If the game tend to encourage anti-social, high stress behavior that is what players will model.
  4. Developers reap what they sow: They’ll in turn use those same social norms when interacting with the developer.

In short, if you build a high stress game where people are encouraged to act like assholes, you’ll get a community of assholes who think that it is entirely normal to abuse others, including the developer of their favorite game.

If you build a safe environment that actively promotes prosocial behavior, your community will be much more pleasant. Players of cozy games likely score highly on conscientiousness and agreeableness. Cozy games attract nice people.

The Sad Exception of The Sims Online: The Sims Online was a potentially cozy game dominated by a community of sociopaths. Thematically, it had elements of coziness with pleasant house in friendly neighborhoods. However, these went only skin deep. In an attempt to make a ‘realistic’ simulation, many resources including housing were zero sum in nature. This enabled mafia-esque gangs to enforce coercive social structures like protection rackets. Very quickly the place became anti-cozy; a virtual dystopia. Coziness needs to exist at the systems level in order to have social ramifications.

3. General Cozy Design Principles

We’ve discussed what cozy games are and why you might want to build them. Now we’ll cover design tools that help you build them. These high level principles provide direction and framing for designing a cozy or cozier game.

Cozy is an adjective

As you approach cozy design, remember that coziness is an aesthetic goal, a flavor that can be applied to any underlying type of game. Some mechanics are emotionally more in tune with coziness, but any game can be made more cozy. This also means that there is no single defining genre that is “coziness”. (We have a whole chapter below about integrating cozy moments into traditionally non-cozy genres.)

Coziness is player dependent

Coziness depends on where the player is coming from when they interact with your game. You can encourage coziness, but you can’t force it on a player.

  • The coziest space will not feel cozy if a player enters it with pressing external needs. For example, a violently angry teen may find a little village full of happy birds infuriating since it does nothing for their need to exert force
  • A cozy social structure can still be hostile if players want to engage in a conflicting forms of expression. For example, a player who sees their universe as inherently about competition may find a game with meditative gardening oppressive or boring.

Cozy design become less about forcing an ideal utopian state and more about facilitating these feelings as best as possible given a wide spread of player motivations and emotional states.

Coziness thrives on authenticity

The closer coziness gets to a real world situation with real people and honest human pleasures, the stronger the impact. A real mug of tea is cozier than an image of a mug of tea. Real safety is cozier than reading about someone who is safe.

Digital games face a number of challenges here. It will be quite some time before we gain the tactile or olfactory feedback often associated with cozy objects and situations; the warmth of the coffee, the spray of the ocean, the sweet texture of a fresh-picked raspberry, the touch of crisp sheets in a warm bed in a cool room.

Yet there are numerous areas where games can still be authentic.

  • In multiplayer games, you are in fact interacting with real humans and you can build real relationships with them.
  • Opportunities for introspection lead to real personal insight.
  • Complex leadership or organizational skills can transfer to other real world situations.

So games do some pieces of coziness well and others poorly. Focus on their strengths.

4. Patterns of Cozy Aesthetics

Once we get past the general tips for designing coziness, there are a number of highly specific design patterns for each domain of game design. Over the following sections, we’ll cover aesthetics, content, mechanics, character, narrative and social system.

What are cozy aesthetics?: For the first sub-topic we’ll tackle how the aesthetics (visual, audio and/or tactile output) of a game element can create a feeling of coziness that is separate from (and therefore may be improved or reduced by) gameplay.

Most cozy aesthetic elements are sensory cues tha:

  • Are familiar to the player due to past experience, nostalgic or shared cultural language.
  • Intentionally evoke images of safety, softness, and contentedness.
  • Often contrast a shared refuge from a less pleasant external environment.

Historically, aesthetics of safety and softness have been marketed towards children, but cozy sensory cues can be more powerful for adults. Memories are like batteries of emotion. Over decades of living, an adult builds a rich history with otherwise mundane objects and environments, storing away personal and cultural meaning

Like the other elements of coziness, these aesthetics may be applied either across an entire game or within a non-cozy game as a “pocket” of aesthetic coziness. Cozy moments in any game can help reset or reframe the player’s mindset, as exemplified by the visuals and music of the game resume sequence in Stardew Valley (argued by Jeff Ramos of Polygon to be a key element in the game’s pastoral fantasy).

Ingredients of cozy aesthetics:

    • Abundance: Although visual or audio “clutter” is not recommended, a theme of plenty and generousness assists in player calm and security. Visually, providing evidence of an abundance of food, drink, joy, and/or warmth is common in cozy spaces across games such as in taverns, kitchens, cafes, and bedrooms.
Dragon’s Crown offers cozy cooking with an abundance of ingredients
    • Smooth Transitions: Gentle gradients between states, colors, or environments within the cozy area. Thresholds, however, between cozy & uncomfortable or even dangerous spaces may be more satisfying if distinct when seen and/or crossed, such as coming in from a snowstorm into a log cabin, or ducking into a cave behind a waterfall.

Hearthstone offers the metaphor of a small, carved wooden box from which you play the game, with smooth transitions between different play modes.

    • Protection & Support: Clear signals of strong safety and comfort, from the environment and characters around the player, signal that this is a safe place in which to explore higher-order needs. For example, a dog or cat that is soundly asleep or a guardian character that is relaxing indicates no danger is present, even outside the player’s senses.
Undertale uses warm tones, focused interiors, and the presence of a relaxed guardian character to indicate this space is safe and cozy.
    • Focus: Elimination of interruptions, pressures or sources of unwanted distraction, allows the player to feel a place is knowable and thereby becomes familiar and comfortable. In visual terms, this means a sense of enclosure and intimate framing. It is highly likely that “interior” spaces in early role-playing games eliminated exteriors for technological restrictions, but this focus continues to be used in modern cozy games, from Animal Crossing to Terraria.
The Zelda series often offers cozy house interiors, literally blocking any sense of an outside world that could interfere.
    • Mundanity: A fundamentally familiar and knowable setting or place will be cozier than the unfamiliar, alien, exotic, or fantastical, if only because it takes longer for the player to ascertain if the space offers true safety and abundance. Hammocks, tea rooms, and pantries, for example, are cozier than otherwise-beautiful and enclosed locations like palaces, zoos, or penthouse suites.
    • Refuge & Escape: if there is an “outside” to this space, it is contrasted in its discomfort or danger. Shelters from storms, roofs from rain or harsh sun, or even a garden inside a bustling city make a place of everyday self-care.

One of the earliest promotional images of Hyper Light Drifter are of the drifter relaxing next to a campfire while monsters look on. The eyes at a distance make the fire feel even cozier.

    • Human-centric: The comfort and ease of humans in this space or system is apparent. The scale of the objects, architecture, and other creatures are comfortable for humans. Things which are too small or too large intrude on coziness with feelings of unbelonging, claustrophobia or agoraphobia.

Terraria’s room requirements and mechanics encourage cozy placements of lighting and doors to keep out threats and protect allies.

  • Welcome: When the player is explicitly positioned as a welcomed entity, this gives them the freedom and safety to express themselves. This welcome does not imply responsibility or pressure on them as a hero or other job to perform, but rather welcomes them as a person, to join whatever activities are available, or to be alone, as they wish. Bartenders often greet newcomers with a welcome, whether the tavern is digital or physical, to encourage a longer and more leisurely visit.
  • Seasons: The visual passing of seasons is heavily connoted with coziness in their familiarity and rituals, often of community and abundance. Autumn and winter are especially rich in potential, with a good harvest and refuge from cold weather causing potential any interior space to become cozy.
  • Ritual: Facilitating repeated, meaningful actions can create familiarity and contentedness.

Harvest Moon was a popular cozy title that offered a mundane, ritual refuge in pastoral life, with clearly demarcated seasons to signify both economic and community activities.

Cozy Visuals

Cozy visuals include:

    • Colors: Warm, gentle color palette (yellows, oranges), without high-intensity contrast or hues.
    • Light: Warm-toned lighting of clear origin and low ambient, which allows for soft shadows. If the source of light is intense, such as the sun, bright lamp or stoked fire, it’s best to soften the beams in some way (i.e. dappled, partially obscured, or gently shaded).
The Witcher 3 uses warm, yellow tones in its lighting and materials to make their taverns feel even more welcoming.
    • Natural materials: wood, stone, fur, moss, cotton, wool, water, living plants. These materials are familiar, implying either sturdy, ancestral safety or physical comfort. These materials can be harder to find in science fiction worlds, making them more likely to feel sterile, unwelcoming, and uncomfortable. Hand-made materials and rustic objects, which imply they were crafted and/or preserved with care and attention.

Yoshi’s Woolly World makes the entire world feel touchable, soft, and lovingly crafted.

  • Space: Closer, intimate, more enclosed spaces. Outdoor spaces should obscure the distant horizon partially in some way, through geometry, fog, or darkness.
  • Contrast: Ideally, provide a window or reminder of an external non-cozy space you are taking refuge from, such as rain, snow, etc.

What Remains of Edith Finch offers many intimate spaces to explore, but none so cozy as the sun-dappled grandmother’s room, with evidence of leisure time and abundance.

Cozy Audio

Cozy audio is continuous, soft, and non-intrusive, with an element of familiarity. The sources of both music and audio should ideally be diegetic to allow the players to connect concretely or even intimately with those sources.


  • Ambient, possibly dynamic or gently unpredictable. Ex. Playstation background music, jazz.
  • Gentle acoustic, organic/human-centered music – score and performance
  • Humanity in music can also be increased through small, subtle imperfections, such as recorded aspirations, fingering mistakes, etc.


  • Any hint of external threat or danger should be muted and distant
  • Ideally all sounds should have an identifiable concrete, diagetic source.
  • Waterfall, rivers, rain
  • Gentle fire
  • Cat purring
  • Indistinct chatter
  • Non-violent storms
  • (Controversial/taste-based) ASMR
  • White noise can be used to help with difficulty sleeping, as the varying texture ‘washes out’ individual noises and becomes easily ignored. This effect can also be achieved by steady hums or noises, such as from fans or machinery.

Cozy locations

Cozy locations are centered on leisure, practicality, ritual, history, and familiarity. Cozy content allows for privacy and creative expression, physically dividing spaces into nooks and alcoves and providing means for people to spend companionable, low-intensity time with others or in solitude. It can be helpful to also reference historical or other deeply familiar touchstones, to make the space more immediately knowable. Places where players can decorate can become cozy as it suits the player’s taste and expression, and players may seek out cozy environments as a way of changing pace in contrast to more demanding environments.

Cozy place examples:

  • Sociable yet private, discrete 3rd spaces separate from responsibility or ‘work’: bars, cafes, retreats, libraries, cabins, gardens
  • Transition spaces without danger or obligation: trains, backseat of a car, slow-moving spacecraft
  • Unpretentious community gathering & ritual spaces: farmer’s markets, kitchens, chapels
  • Places that fill basic needs, including food, rest, warmth, and opt-in sociability. They should include visible places to comfortably sit, eat, drink, and view beauty.
  • Places that support low-demand companionship, such as those with calm pets, or passive NPC-watching.
  • Spaces can become cozy once danger is no longer present: an arena where a boss fight used to be can become a cozy playground for celebration and bonding, or a cozy environment can be a goal for exploring part of a map.

Places with enclosed, strongly seasonal identities will also evoke coziness

  • Autumn coziness: warm color palettes, warm food/drink, family/holiday traditions, and soft materials, such as in Lieve Oma
  • Winter coziness: muffling snow, beautiful mountains (outside), family/holiday traditions, gifts, and soft materials.
  • Spring coziness: blossoming gardens, romantic traditions, nurturing baby animals
  • Summer coziness: cooling in the shade, ocean waves, iced treats

Cozy items

Cozy items are those found in cozy spaces or that are used to perform cozy activities

  • Hobby or “crafty” leisure items: Fishing rod, books, gathering baskets, mechanical keyboard, cooking tools, cut flowers, wooden blocks, walking sticks
  • Physically comforting items: Quilts, blankets, socks, tea sets, rocking chairs
  • Food and drink themselves can be cozy: a frothy mug of beer is more cozy than a alchemical potion; items that can be shared or suggest plenty (a slice of cake, a bunch of grapes, sacks of flour) reinforce a sense of sharing, abundance, and generosity
  • Things that are cute but low-intensity can be cozy: elaborate costumes and skins may be too laden with status or opulence, but simpler or understated styles can feel less threatening or attention-seeking.
  • Even cold and hard objects (typewriters, tea sets) can invoke cozy feelings of intimacy or nostalgia, if lovingly hand-crafted (“artisanal”) or loaded with familial or historical meaning.
  • Domestic objects can signal coziness, the more mundane the better: wagons, mailboxes, a porch swing, a pair of boots, a raincoat.

5. Patterns of Cozy Mechanics

Beneath the aesthetics of a game, its underlying mechanics may seem at first neutral or benign with regard to coziness. However, a fundamental mechanic or motivation can engender a positive or negative sense of coziness, and contribute to the overall tone and feel of the game.

Intrinsically rewarding activities

For something to be cozy, it has to be, in and of itself, satisfying — not satisfying because it contributes to some other purpose. When the reward of an activity outweighs its gentle momentary pleasure, the activity can become extrinsic and lose its cozy appeal.

Compulsory mechanics often detract from a game’s coziness. Since coziness is an opt-in affordance, any player activity driven by extrinsic motivation – either as requisite responsibility or threat-response, or as an artificial reward – tends to evoke an un-cozy experience.

  • In Animal Crossing, the sounds of shaking trees to get fruit is inherently pleasurable even after thousands of repetitions.
  • In Zelda, the cooking process of tossing the ingredients in the hot pot and waiting to see if they’ll be a success is inherently pleasant.

Breadth of optional activities

The cozy experience depends on high player agency. You need to chose to do a task of your own volution. Giving players a wide number of possible tasks and then not forcing them to do any of them lets them take responsibility for their actions.


  • In Animal Crossing: New Leaf there are numerous activities such as fishing, decorating, gardening, clothing creation, fetch quests, etc. But all of these can be ignored with no ill results. The same pattern is used in Stardew Valley and Harvest Moon.
  • We see something similar in less cozy games like Zelda: Breath of the Wild. Cozy activities are harvesting and cooking are never required to progress.
  • In Destiny 2, there’s a soccer ball just sitting there. If you kick it into a goal, a scoreboard increments. But nothing tells you to play soccer. There’s no official start or stop to a match. This ends up being a cozy moment of opt-in social fun.

Safe rituals

Some player activities can achieve a sense of coziness due to their familiarity. Repeated low risk tasks allow the player to relax.

  • Safe: The activity is known to be safe and will not cause stress or danger.
  • Known: The activity is constrained. It will not suddenly eat up an unexpected amount of time, labor or resources.
  • Relaxed: The activity is low mental cost. It occupies the hands, but frees the mind to work on other more subtle concerns.


  • A mundane act of organization or tidying
  • A walk down a familiar path.
  • Searching or collecting for diamonds, berries or fossils — though not under duress.
  • Even a busy environment or activity, if exceedingly familiar, can provide a sense of coziness. Like the ritual of going to a gently buzzing coffee shop to write.
  • For some players, a self-appointed task — harvest and replant the crops — can be relaxing in a safe, soft, and satisfying way.

There are many mundane objects from the cozy items list above are associated with low risk activities.

  • Fishing with a fishing rod
  • Reading a book
  • Putting on cozy socks (and wiggling your toes)
  • Bundling up in a quilt your mother made you. Or sewing a quilt for a child you love.
  • Brewing tea in a chipped tea set given to you by your grandmother.
  • Drinking steaming coffee from that strange handcrafted mug you got visiting your aunt in Maine.
  • Typing on a clacky typewriter in a warm wood paneled study (with flakes of snow outside)

The challenge of emergent extrinsic rewards

Some mechanics may start off as cozy, but later become reduced or compromised as players acclimate to gameplay systems and (consciously or subconsciously) seek to min/max them. A quaint trading bazaar or relaxing spawn point in an MMO can rapidly lose its charm as players queue up for their turn at an activity, exchanging intimate intrinsic experiential rewards for (ultimately shallow) extrinsic payouts.

We recommend tracking player behavior and identifying when extrinsic rewards start to take over. Often a simple obfuscation of feedback is enough to dampen the feedback loop. If that doesn’t work, take a look at the economic rewards and balance them such that comfier behavior dominates.

The challenge of cozy monetization

Coziness can be weaponized. Because it establishes intimacy and vulnerability, it can be used to lower barriers to purchase.

For example, a timeshare sales process offers a participant a free meal or cash reward in an comfy, gorgeous setting. In return, they leverage this atmosphere of generosity to encourage the mark to complete the reciprocation loop and purchase a very expensive timeshare.

Many standard monetization practices damage coziness. Social comparison creates social anxiety for some players. Time pressure on sales and event generates a fear of missing out. Heavily promoted item rarity makes players feel a strong sense of scarcity.

The best practice here is twofold

  • Service existing needs. If you can, sell products within the game that address real existing player needs. You’ll be selling something that results in a meaningful addition to the player’s life outside the game. Minimize artificially generating needs and then cynically making merchandise to fill that need. Don’t be the doctor who poisons their patient and then sells them the cure.
  • Balance for honesty and coziness. Some scarcity and social comparison is okay if done in moderation. It can provide contrast to other cozy elements. Tom Nook in Animal Crossing: New Leaf traffics in most of the crass aspects of capitalism. Yet because he is an opt-in component of a much larger game, it ends up being okay. When Animal Crossing: Pocket Camp makes this experience the whole game, coziness is lost.

6. Patterns of Cozy Narrative

Ambient Narratives

When coziness is the central mode of a game’s narrative, it tends to exhibit certain qualities:

  • Low-pressure – Even if the stakes are high, anxiety is low.
  • Low-intensity – Cozy stories unfold at a place of the player’s choosing with little urgency.
  • Ensemble – Stories of a “chosen one” that emphasize the exceptionalism of the player are at odds with authenticity.
  • Non-violent – Conflicts are ephemeral and a path to understanding.
  • Intimate – A moderate size number of players to build familiarity
  • Down-to-earth – Humble and grounded. Find wonder and contentment in the familiar.
  • Emphasis on ritual – seasons, holidays, day/night, harvest cycles. Stories that lazily drift along the river of time
  • Episodic – The sum of experiences is greater than any one story

The Atelier games frame the fantasy around career, community, and cozy objects/spaces

Intermezzo Narratives

Intermezzo refers to a musical score that occurs between other major musical movements. Coziness can also offer respite in an otherwise intense narrative:

  • Safety in the storm – Dark Souls campfire
  • The calm before the storm – Ellie’s guitar or giraffes in The Last of Us
  • A place to call home – The private rooms of the Normandy in Mass Effect
  • Denouement -after needs are met, climax achieved, explicit opt-in room to relax and “do nothing”
Dragon Age: Companions take time to reflect and unwind after adventures.

Cozy narrative archetypes

We see common narrative patterns show up repeatedly.

  • “It Takes a Village” – Communities banding together for the common good
  • “Homecoming” – A return to familiar faces and a gentle reflection on time
  • “Immigrant’s Story” – Starting a new life in a new place with a fresh start
  • “Pastoral Escape” – Consciously choosing to leave the troubles of modern life for something simpler
  • “Honest Labor” – the celebration of dedication to a craft
  • “After Hours” – A focus on the small moments and relationships that happen in between work and adversity
Night in the Woods: Narrative leans into cozy tropes to explore complex themes

7. Patterns of cozy characters

Non-player characters in a cozy game should exemplify or facilitate the cozy virtues of safety, softness and satisfied needs. This can manifest through the character’s role, their aesthetics, and the affordances of interaction offered the player.

Tend and befriend

Cozy characters embody the tend and befriend response, offering players a support and respite from outside stress. They are often nurturers, providing affection, shelter, food, companionship, and acceptance. More simply, characters reassure the player that they are loved. This can manifest with roles traditionally roles traditionally associated with cozy places – bartenders, innkeepers, librarians, farmers, grandmothers, spouse, etc. They can do the heavy lifting of emotional labor for the player.

Cozy characters can assist the player in her goals. The coziness of these gestures is amplified when the acts are non-transactional. In the cozy fantasy, we help each other because it is the nice thing to do. Favors and gifts are cozy; obligation and neediness are not.

Characters might be designed to be recipients of nurturing gestures by the player. Taken to the extreme, this can include literal pets or characters who fulfill the same function of a pet, whose function in the game world is to adopted and cared for. Conversely, curmudgeons and even pariahs have an important place in cozy games, offering the player the ability to signal empathy. These antisocial characters give a community authenticity; like a patchwork quilt, mismatched scraps add to the charm.


  • Ignis in Final Fantasy XV taking pride and pleasure in cooking for the party
  • Characters in Stardew Valley sending you recipes in the mail to show gratitude
  • Cranky villagers in Animal crossing keeping things grounded
FFXV’s companions are confident in what they bring to the team and look out for each other.

Intimacy, authenticity and autonomy

Within a cozy space, character interactions should allow for vulnerability and intimacy. The intrinsic reward for engaging with cozy characters is a sense of belonging in the community, possibly, but not necessarily, building to friendship or romance. Gestures of trust, like sharing a secret or inviting a player into a private space, are especially powerful at making the player feel welcome.

In crafting cozy characters, authenticity is more important than complexity. Simple interactions should reinforce that the characters have their own inner lives separate from the player’s agenda. Brevity is a virtue as it puts less pressure on the player to know everything about a character.

Cozy relationships are founded on consent. What makes grumpy characters tolerable and even charming is the opt-in nature of engaging with them. It is comforting to know that within a community, life goes on independent of the player’s agency.


  • Going out for Ramen with Ryuji in Persona 5
  • KK Slider passing through town
  • Oscar the Grouch
Persona 5 builds intimacy with its cast through mundane activities.

Visual character design

Characters can leverage cozy aesthetics, much like places.

  • Posture and animations that emphasize relaxation and contentment can model a cozy mood.
  • A soothing voice, like that of Bob Ross, can put the player at ease.
  • Soft and cuddly appearance that invites hugging, like a Totoro

Cozy context allows otherwise threatening authority figures, like a boss, a cop, or royalty, to expose their humanity. Anyone from a criminal, to a demon, to a king to a town drunk can be cozy when the let their guard down. Coziness is a shortcut to empathy.

In Howl’s Moving Castle, Calcifer is grumpy, judgmental, and initially fearsome, but moments of vulnerability make him a beloved member of the household.

8. Patterns of cozy social mechanics

One of the key higher-level needs is forming connections with others. While NPCs do offer an avenue for players to practice forming relationships, our current weak simulations will never replace real relationships with real people. For this, we need to examine the cozy systems of multiplayer games.

Challenge of cozy interactions online

Virtual environments present unique challenges to the facilitation of coziness. Online is arguably inherently dehumanizing.

  • Strangers: Due to the logistical challenges of getting friends together in the same time, place and game, online game players tend to be strangers. We don’t know or trust most strangers and are generally act in a guarded fashion around them. This immediately puts safety on the back burner.
  • Lack of persistent identity: When players know they’ll never see another person again, they may lower their inhibitions to pushing the spatial, moral, or legal boundaries of others. You need to build robustly pro-social systems or else players immediately devolve into a Lord of the Flies-style wasteland of griefers and populist mobs. Witness Twitter.
  • Low bandwidth communication: Most of the information present in real-world human interaction is either inaccurate or simply not simulated in games. Facial expressions, tone of voice, even conversational pacing is lost. Troublesome behavior like insincerity, perceived or real, ruin the coziness of a player’s experience.

Use cozy norms to attract a better community

The current dominant multiplayer design pattern uses limited resources, high stakes, and hazardous worlds to drive competitive behavior between players. The optimal strategy in these environments is to see other strangers as enemies who must be avoided or destroyed. It is a recapitulation of Fight or Flight motivations.

The cozy alternative is to implement abundance, safety, and reprieve to foster cooperative and trustful interactions. The resulting pro-social environment can shift players attitudes positively towards other players. Instead of destruction, we signal mutual support. Instead of othering, we showcase the formation of coherent social groups. You’ll see these steps occur:

  • The game promotes social norms that promise and encourage trust.
  • This results in fewer failed reciprocation loops. Players let their guard down.
  • Players that reciprocate tend to escalate the depth of their relationship.
  • Over time, comfy spaces yield stronger friendships.

Social norms to aim for: When designing a cozy community, ask yourself what social systems and signals you’ve put in place that encourage the following community norms. Focus on the positive things you can do vs the things you shouldn’t do.

  • Politeness: We are nice to one another.
  • Consent: Ask for consent. It is okay if someone opts out.
  • Help one another: If someone needs help, the community will lend a hand.
  • Protection from threat: If there’s a threat, the community is a safe haven.
  • Emotional support: Sometimes people have a bad day. The community is willing to lend a shoulder to cry on.
  • Celebration of relationships: It is wonderful when people meet and wonderful when they become better friends. The community supports this.
  • Mend, Don’t End: People make mistakes, sometimes people get hurt. As a community we will try to mend things when we get upset.

Tools for creating norms: There are systems worth adding to facilitate social norms. You don’t need to just accept what the community brings. You can shape it.

  • Code of conduct: Get players to agree to how you want them to behave in the game. This works.
  • Feedback systems that immediately target a behavior: Make systems that target a behavior, not ones that label a person as bad, evil or ruined. Reputation flags or banservers end up creating culture where bad behavior is acceptable. Instead, notify players in a timely fashion that they’ve done something against the norms and let them know what the infraction was and how they might improve.
  • Gameplay scenarios that enforce norms: If being generous is a goal, create quests that result in being generous to others. There’s a risk with use overly strong extrinsic rewards, but simply signposting the activity is often enough.

Beware of importing norms: Often you’ll import arbitrary norms from the default culture and these can accidently poison the cozy atmosphere. There are many of these related to gender, race, age and class. Even traditions such as RPG Alignments can be problematic. For example, in D&D it is possible to have a Chaotic Evil character. But when that player roleplays that norm, the rest of the community suffers.

Note on cozy in competitive games: While online competitive games can hurt friendship formation, there’s still room in team-based games for cozy moments. Think about creating warm and welcoming spaces for the team members when they aren’t fighting. Give them a place to work on deepening their relationships with one another.

Escalating layers of opt-in interactions

Permission setting is perhaps the most important tool for prevent a social coziness calamity. It is too easy to accidentally for someone for force communication on another person, holding them hostage to an interaction they don’t desire.

  • Call and Response interactions: A player chooses to broadcast a no-pressure initiation to a group (best if larger than one other person). Other players can choose to acknowledge the call and respond, but are not burdened with expectation.
  • Layers of Investment: In this “Social Onion” model for permission setting, a player starts at a level of non-interaction. At their own discretion, the player may then opt-in to increasingly risky layers of interaction with individuals or the public one layer at a time.
  • 1 on 1 interactions can come later: There an obligation of both attention and intimacy that occurs in a 1 on 1 social situation. Even the act of listening is a form of emotional labor. You may want to structure your comfy inactions so this is optional and only the default for people who have opted into a higher engagement relationship (such as declaring mutual friendship).
  • Use invitations to escalate a relationship: Demand and requests can generate an unpleasant obligation to respond. Create ways for players to kindly invite another person to a space or activity. This is a very warm and welcoming opening and creates a safe opportunity to opt-out. Group invites are good for new relationships. Individual invites are good for medium to high intimacy relationships.
  • Small cooperative groups can facilitate escalation: Encourage dense, frequent interactions between small groups of players. By forming players into persistent cohorts (via guilds or matchmaking) players will bump into one another regularly when they play. This incrementally creates familiarity, recognition, sense of shared experience (all cozy factors). Some members of the group will naturally opt-in to deep relationships.
  • Opt-in permissive communication channels: Trust come late in a relationship. As a result early transgressive humor can be quite hurtful. But later, once players know one another, humor becomes a signal of trust. We can joke and be silly and not be censored. We can share intimate and scary details about ourselves without risk of rejection.So where early communication methods are locked down, small group or friend-to-friend channel need to be more more permissive. Or else cozy trust will not flourish.
  • Blocklists: When your best attempts at creating mutual opt-in interactions fail, blocking communications is a necessary evil. But it would be preferable to avoid disruptions to the player’s experience altogether. Whitelists and de-escalating barriers may be more natural and effective.

For more information, see the previous Project Horseshoe report Game design patterns that facilitate strangers becoming “friends”

Low cost social reciprocity

Low risk social interactions can feel cozy. When you nod to a smiling passerby or wave to a friend, you are fulfilling your social needs in manner that doesn’t take much effort and is unlikely to be rejected.

Tools for low cost reciprocity:

  • Positive Emotes: Have a curated emote system that focuses on positive signals such as smiling or waving. Allow congratulating, nodding in affirmation and encouraging.
  • Grumpy emotes: Negative emotes are still useful, but you can treat them in a melodramatic cartoon fashion that takes the sting out. A cute little character stomping about is a lot more palatable than one that screams loudly or teabags your avatar.
  • Automate subconscious social interactions. Characters can turn to face a player as they walk by or tilt their head in acknowledgement. As you get closer, the other avatars can pay more attention. If you talk, other avatars can automatically turn to listen. This mimics what we do in real life.
  • Streamlined UI: Make the interface for emoting accessible and easy to use. If you bury social verbs in menus, they’ll never happen.
  • Signal social context automatically: For example, a scene can shift to low light intimate colors if two people are chatting but shift to bright colors if lots of people are talking.

Central to all these tools is the design exercising of imagining you exist in a space where you are known and accepted and asking some simple questions:

  • What social interactions would occur?
  • How can you work those into the animations and communication options for your character?

Limits to cozy emotes: If the game mechanics are poisonous, ‘nice’ emotes can become polluted. Emotes in Hearthstone (a PvP game) on the surface are pleasant, polite interactions. However, the community quickly figured out how to make them into biting insults. For example ‘Hello’ is used to brag when delivering a particularly deadly combo attack.

Also be aware that emotes are good for ritualistic social maintenance, but not for intimate disclosure or deep relationship building. In fact, a superficial emote used on a good friend may feel dismissive.

Let conversations ramble

Consensual conversation is a naturally high agency, high creativity activity that builds strong social connections. Online communication is often used in games to help players coordinate get things done. But cozy conversation tends to occupy more of a social maintenance space. That is, chatting about nothing in particular with a friend is more cozy than trying to make a decision in a meeting.

Create moments or spaces in your game where players can communicate without much emphasis on purpose of meaning.

  • Let players linger in rooms or areas where the purpose is fulfilled rather than giving them the boot.
  • Have group harvesting or crafting moments where players are engaged enough to stay in the area, but the activity is low intensity enough that they can still chat and follow a conversation.
Champion Trains in Guild Wars 2

For example, an unintentionally high-retention activity known as “Champion Trains” emerged in Guild Wars 2 when players complete easy loops of boss monsters to kill repeatedly. There were better rewards elsewhere; but a big draw was casual social interaction with the community. Because these groups are easy to coordinate, chats often featured relatively meaningless and rambling topics.


Gifting is one of the more powerful social signals of abundance and caring. A gift tends to mean the giver’s basic needs are met and they want to support others. Gifting is often an intrinsically motivated gesture where it is gauche to expect a gift back. This perceived honesty acts as jet fuel for the reciprocity engine that drives deeper friendships.

However, not all gifts are created equal.

  • Person interaction associated with the gift: Direct interpersonal interactions mixed with small personal gifts are the most cozy. The gift augments the existing warmth in the relationship, but ultimately the face-to-face interactions and long history are the source of meaning.
  • Care delivering the gift: Gifts become less cozy when when they are received by a courier or heaven forbid, a utilitarian menu.
  • Effort sourcing gift: Gifts also are less cozy if there is little care given in selecting or producing the gift. Social games had buttons where you could spam friends with endlessly duplicated boosters of little value. Players soon learned that these were mostly meaningless. On the other hand, the game Triple Town only gave out gifts if you had scored well in games that could last weeks or months. And you could only give those gifts to a single person. Each one was precious and valued.

Safety in numbers

We can create cozy economic situations that encourage players to bond together in order to keep out a hostile world. This technique again taps into tend and befriend psychology.

For example, in Everquest, player would settle down around a camping spot to rest and recharge. At any moment a train of high level monsters might smash into the group wreaking havoc. However, the space felt cozy since you were together with other player who you knew would leap to your mutual defense at the appearance of danger. Together, the players feel safe.

Fishing in PvP zone Alterac Valley in World of Warcraft

More examples

  • The comradery of fishing together in the PvP areas of World of Warcraft
  • Crafting at the campfire in Don’t Starve together during the night.
  • Cluster of traders sitting in the dangerous wilderness in Realm of the Mad God

Use cozy feedback to make up for low social bandwidth

Address the low fidelity level of virtual social interaction head on. Design channels of feedback that help players clarify the context of situations and communications.

  • Trust Heuristics and Settings: Move beyond binary expressions of trust and permission, such as friend or not friend. Alert players to how they are progressing along multiple dimensions of a potential new relationship, such as common friends, interests or skills. Automatically color a chat room based on how many players are present, or how intimate the chat is.
  • Opt-in to social risk level: Allow certain levels of automatic permission based on the player’s social-risk preferences.
  • Feedback Requests: Give players a non-threatening method to ask for feedback and find out how they’re doing. Private feedback channels allow people to make adjustments without being shamed.
  • Apology Channels – Offer players the ability to atone for mistakes. Sincerity is key, consider enforcing a delay or an ability to immediately say “I’ll think about this” and let the apology come later.
Google Hangouts experimented with allowing users to collaboratively dress up message windows. Would this change the tone of your conversation?

Drawbacks of Social Coziness

Forcing cozy causes it to fall apart

Remember that more isn’t always more. Cozy social interaction is a trust-based process and the nature of trust is fickle.

  • Trust is earned slowly and then quickly lost, often collapsing relationships when it all falls apart.
  • Vulnerability is difficult enough to reach in the real world and it may take longer to reach that state in an online game.
  • Some players may simply be wary or incapable of forming cozy virtual connections with others.

When There’s Comfort in Solitude

Games that facilitate a high degree of social coziness run the risk of eventually isolating players from one another. As players form deeper relationships and tightly-knit groups, they may lose a sense of that game’s greater community as a whole. In some cases, various gaming communities are so cozy that they’ve grown indifferent or hostile to newcomers and outsiders. Monitor the density of your game’s population carefully, and be sure to facilitate new connections between players.

Looking Ahead: More Sofas, Less Lobbies

Outlook on the future of social game interactions should be optimistic. Anecdotes of poor behavior that pollute the online gaming space may (at least in part) be a case of how function follows form. Though initially useful for clarity, many conventions of online spaces and interfaces are aging poorly. As audiences become more sophisticated, so too should the mechanics by which they interact online. Coziness can be a useful evaluation lens on how a social mechanic might be upgraded or replaced.

For example, the term “lobby” is often used in gaming to describe the pre-game flow of activity. Consider what types of interactions you’ve had with other people in lobbies. Now decide if that’s really how people should meet and interact in your game. This is applicable to developers of cozy worlds and perhaps doubly-so for developers looking to build social retention into any type of game.

The developers of Halo 2 re-imagined the matchmaking lobby as a virtual sofa. At the time, staying with the same group from match to match was a big innovation. A very cozy move for a decidedly un-cozy game.

9. Augmenting Non-cozy Games

You don’t need to make your entire game uniformly cozy to gain the benefits of cozy design. Many traditional games satisfy cozy needs by including separate, safe cozy spaces.

Here are several patterns you can use to integrate coziness into your game.

A refuge in an otherwise intense game

Think of creating a cozy sandwich for your high stress game. On the inside are the meaty moments of action. And on the outside are comforting moments of coziness.

The cozy sandwich

In the hardcore hit Dark Souls, gameplay is built around an accumulation of stress. The further you are from the safety of a previous bonfire (save point), the more at-risk you are for permanently losing your accumulated resources.This is not cozy.

Yet, the bonfire locations in Dark Souls manages to have several cozy qualities:

  • They remove all immediate danger (no monsters, no aggro overlap with something outside the space, no dangerous surfaces), which gives a moment of safety to an otherwise intense and dangerous game
  • They provide an ability to spend your currency, lessening the risk of losing it, which also ties to safety (no impending loss or threat)
  • The audio, lighting, and level design feedback is leveraged to create an intimate space with soothing qualities (the crackling of the fire, the lessening or elimination of intense sounds, the warm glow of the fire, the closeness of walls). These are linked to the quality of softness by providing comforting feedback and an opportunity of a lowered state of arousal.
  • The bonfire also by giving you access to your storage, offering abundance of resources when the more frequent gameplay experience of adventuring features resource scarcity (limited pockets, stack limits). There’s a moment for tinkering and rearranging.

These cozy qualities improve pacing throughout the game, and form the basis of the central loop of the game:

  1. Desire: You start in a place of safety, but also suffer from scarcity.
  2. Adventure: Motivated by your lack of resources and a need to progress, you move further into danger, collect more vulnerable resources, and overcome a large risky obstacle.
  3. Respite: Finally, you set your burden down to reset the loop and save your progress. This is the moment of coziness.

This loop keeps the game digestible and the wins incremental and continuous rather than one large all-or-nothing encounter.

Persistent small groups in multiplayer games

Call of Duty (among other games) will team up the player with a small group of other player and persist that group throughout matches. This social structure has several cozy qualities, but the specifics of the group makeup could make that grouping feel more or less cozy.

  • Spending continual time together with a set of shared goals promotes familiarity and reliability between the participants.
  • The matchmaking process is opt-in, so these connections aren’t thrust upon you in an uncomfortable way. You can alway opt out if the situations starts to feel emotionally unsafe.
  • These shared experiences with a more intimate might open conversation and expression possibilities inappropriate for a more open, anonymous venue. This freedom ties to one’s ability to be vulnerable and expressive without negative ramification. Obviously, if the group is hostile toward these overtures, then this potential breaks down.

Though the game might feel inherently non-cozy, these moments of social coziness help to form lasting bonds and promote strangers to more meaningful relationships where deeper communication and social safely exists.

Build cozy connections with non-player characters

Characters can also function a cozy moments in otherwise non-cozy games. This satisfies the need to connect with others in a safe fashion. Cozy NPCs are often facilitators, and can be connected to cozy locations. Here are some examples:

Ness’ dad and mom (Earthbound)

The act of saving in many games usually asks the player to pause for a moment, and in this case, that opportunity is taken to deepen your relationship with your father, get some hints, and sometimes even get a few bucks in your account. This interaction features softness, where intimacy of emotion is a break from the moments of combat or other exploration pressures.

Shopkeepers in River City Ransom

The shopkeeper experience in River City Ransom achieves multiple cozy objectives. The cities (where these often appear) are safe and free from opponents, and the shop itself gives a tiny window into a confined, cozy scene between the player and the vendor. The ‘free smile’ has no gameplay progression implications other than to reinforce the safe nature of this space.

This type of space (and other shops) provides a loop closure that forms the backbone of integral gameplay systems (currency acquisition, ability expansion). The cozy qualities of this space afford the player a moment of respite from the compulsions of the other gameplay spaces.

Shopkeeper in The Legend of Zelda

This shares some elements with the River City Ransom shop, but this shop allows the player free movement in a safe space. There is a break in the music, signaling a shift from gameplay to rest space. The walls are closer in than a normal screen, providing an intimacy of space, the colors are warm, and there are bonfires to contribute to the warmth of the space despite the low resolution of the scene.

Chef in Odin Sphere

Moments of character advancement are slowed down for Odin Sphere, and the focus becomes on the act of preparing and consuming food.

Bastion/Stanley Parable narrators
These characters form a comforting backdrop during the play experience. In Bastion, though the character is fighting and in a high state of arousal, the narrator exudes a calming voice, and has authentic and human qualities that help form a cozy connection throughout the game session. By the end of the game, the character is familiar and the relationship between him and the player is substantial.

10. Cozy Development Practices

We’ve been talking about building cozy games, but cozy practices can also be applied to the process of building a game. Or for that matter running any company. A cozy environment tends to have the following benefits:

  • Emotional safety leads to honest communication and genuine collaboration.
  • Abundance leads to a willingness to experiment without fear of loss.
  • Retention of key personnel. Many developers prefer being in a cozy space, or having access to one. Once you’ve experienced a cozy workplace, it is hard to leave.

Foundations: Consent and social norms

How your development team operates depends in large part on the social norms you’ve established. Consider:

  • What social norms does your team hold?
  • How are they established, reinforced and signaled in your team?

Many cozy practices are easy to implement if you are clear in the beginning about what’s acceptable. You need to structure and establish boundaries. Consider working with your team to create genuine, sincere codes of conduct or value statements. Be sure to include the following cozy concepts:

  • Abundance: What are your clear structures of support if something bad happens?
  • Safe consent: How can employees opt-in (or opt-out) of risky opportunities?
  • Softness: How do you create quiet spaces for social connection and self improvement?

Cozy spaces and environments

A space for each type of task: Collaborative design work can be held more effectively in smaller or enclosed spaces. Are your 1:1s held in rooms where both participants feel comfortable and can trust that their conversation is private? Are teams able to take conversations to separate areas where there is less outside noise or bother?

Coziness can be tricky to implement in a workspace, however. Too small a space can be intimidating or claustrophobic, and dim lights can just make it hard to function. It may also be unwelcome if the designer is not yet ready for higher-level work and needs to pursue needs for safety, hunger, thirst, and/or sleep.

Opportunities to escape to a cozy spot: Allowing individuals to choose to go to a cozy environment when desired — say, for brainstorming on an interesting new possibility — can help people offer, develop, and exchange ideas when they otherwise might be drowned out.

For example, Daniel Cook has a coffee shop he escapes to whenever he needs to do writing.

  • There is food and coffee which removes any hunger or thirst.
  • The baristas know his name and (most of them) smile when he walks in. This is a space of safe social connection.
  • In the back of the shop is a quiet area with a warm, bright fireplace.
  • The decor is dark wood and stone with light music trickling in from the front room.
  • Outside, it is often raining gently. Or it is gloriously sunny. Or the fall leaves just take your breath away.
  • No one tells him to go. No one tells him to leave. Writing in the cafe is both a opt-in choice and a comforting ritual he’s been doing for years.

Cozy time: Time can also carry aspects of coziness. Some creative folks give themselves guaranteed unstructured time when they aren’t available for meetings or aren’t working on anything specific, which allows for reflection, inspiration or even just feeling unpressured for a spell. Unscheduled time and personal projects can reap the benefits of coziness as a person’s mind finally has permission to open up and consider new possibilities.

Crunch is not cozy

Consider the extent to which we encourage people to volunteer for extra work, and how such volunteerism is actually pressured. Crunch can result from extrinsic social pressure. Or an internal creative drive. Both still contribute to burnout, increased bug counts, and frustration. When it happens, burnout explicitly blocks coziness since exhaustion prevents team members from moving up the Maslovian hierarchy of needs.

A solution is to increase opportunities for self care.

  • Permit opt-in work schedules. People who can work from home (often a safe, quiet space) or within a flexible range of hours report less stress, higher job satisfaction and higher productivity.
  • Explicitly offer sabbaticals, “mental health days”, and even the ability to take a break or pause a meeting can help reinforce the value of consensual participation.
  • Don’t make impossible schedules that force overtime. This reduces developer agency and long term leads to bad decisions and team churn.

Cozy trust and secrecy

Secrecy and trust are complicated issues in an office. It is crucial to have people you can confide in about doubts or concerns. However, the social dynamics of secrecy can result in decidedly anti-cozy patterns. An employee may not wish to report an issue to their boss for fear of the messenger being shot. Or they may prefer to communicate only through gossip. Or they might form cliques where others feel left out. These are all defensive behaviors intended to preserve personal safety.

The response is to create safety such that there is less need for defensive behavior.

  • Separate the role of manager and mentor (a senior developer not in the direct chain of management) to introduce a confidant who can be trusted and to remove strange power dynamics
  • Actively police interactions were people are punished for being open and trusting. Encourage those that share unpleasant facts.
  • Create opportunities for groups from different cliques to spend repeatedly time with one another. Trust is built upon relationships that form via repeat, positive interactions.

Cozy feedback

One of the most fruitful avenues for encouraging more coziness in design practice is by cozifying feedback processes, because it makes people feel safe and increases trust.

If you can do so earnestly, consider these guidelines for maximally cozy feedback:

  • Be gentle and considerate: remember that most people want to be good and want to receive feedback, and are probably aware of the issue in some context, but it’s hard to switch contexts without raising defenses.
  • Be clear: Ambiguity creates more pressure, and a generalized threat. Identifying specific behaviors, instead of identities, is similarly less threatening.
  • Respect wishes: Respect requests on both sides for privacy, patience, and even outright secrecy, in the pursuit of improved trust.
  • Be timely: Providing processes for immediate repair can restore a positive tone and return control to the person receiving feedback.

Giving feedback cozily would also, presumably, lead to longer-lasting behavioral changes, as the motivation is intrinsic.

For more information, see the previous PH report Creating Emotionally Safe Workplaces in Game Development:

The challenge of conflict

If your working environment thrives on interpersonal conflict, anti-cozy patterns will predominate, and it may be very difficult to create a space, much less a culture, that can be reliably cozy.

A conflict-driven culture may reach a successful local maxima, but there is a cost.

  • Though fans of conflict may find this surprising, openness actually suffers as non-combative people put up protective walls.
  • People who are unable to function in this kind of environment will either fail to perform (“He was quiet and didn’t volunteer many ideas”) or leave.
  • Conflict stirs feelings of constant stress and anxiety so people never end up work on the Not Urgent but Highly Important tasks of self improvement.
  • Many forms of conflict enforce tribal norms resulting in uniformity of both people and ideas. This is particularly poisonous to the ideal of building a diverse workforce.

Changing a conflict-focus culture takes a dedicated and determined effort with vocal leadership support. If you have, or want to have, a diverse team that includes people with different backgrounds and different motivations, it may take some explicit signaling and welcoming in order to build the trust required for people to feel cozy and earnestly engage.

The challenge of too much coziness

Lastly, it is possible to go overboard or cross boundaries in attempting to establish coziness.

  • Forcing Intimacy: Intimacy requires both parties to feel comfortable, and pressure is inimical to it. Remember that social cues such as call-and-response can help gauge willingness to proceed, and ensure that opting-out of coziness is low-pressure too.
  • Lack of dissent: There can be an escape into coziness where people are not willing to address difficult topics for fear of upsetting a pleasure situation. Hedonic coziness is a lesser state that lacks the psychological safety necessary for open and honest conversations. Be sure people can say what they need to say and if not, you need to do some work and have some clear conversations about how to work together better.
  • Not being honest about the stakes or impact of a power differential: Consider the impossibility of hosting a truly cozy job interviews. One participant (the interviewee) cannot feel safe when the course of their life is at stake. Although elements of welcoming and pleasantness can help mitigate other discomforts, coziness shouldn’t be used to manipulate and lull candidates into a false trust.


We encourage developers to build cozy games. If you’ve made it this far, you’ve seen there is a deep well of emotionally resonant design patterns you can use to make almost any game cozier. And on a purely pragmatic level, broadening your game’s appeal means more sales for the same effort.

However, as we went through this process, we also started to see coziness can be treated a positive philosophy for driving meaningful change in the world.

Coziness as a radical philosophy

In a time of increasing divisiveness, othering, and rampant fear and sensationalism, we propose that coziness – in that it provides safety, softness, and the satisfaction of needs – is in fact a powerful and necessary subversion of current culture.

In that coziness sees one’s needs provided for, it is anti-capitalist, and supports the comfort and care of all people.

In that coziness enables us to express our whole selves, without ramification, it is healing and validating in a hyper-critical world.

In that coziness encourages the positive resolution of conflict, it is deeply mending to our societal divides.

In that coziness elevates the softer, gentler aspects of life, it calms a threat-weary population and brings relief from fear.

In that coziness creates spaces of plenty, it provides focus amongst chaos and allows us to embrace our highest level and most human pursuits.

In that coziness offers us spaces of choice and support, it allows us to explore our underlying, intrinsic motivations.

Coziness is healing, validating, collaborative, and kind. Coziness is relief and refuge and gentle opportunity. In a harsh, demanding ecosystem of cynically generated needs and unending urgency, coziness creates comfort, and freedom, and a path to a better world.

A cozy invitation

The following is an Invitation to radically cozy game-making, which you may send (edited at will) to colleagues:

Dear designer whom I care for,

I wish for you that game-making be a refuge from the storm. I take joy from the games you make, and I hope you feel fulfilled when you make them. As a colleague, I want you to feel safe to express your inner self, to take creative risks in your craft. As a friend, I wish that you can escape the ever-present hurry and pressure of our industry and world, into a restful, healthy practice.

If you feel comfortable, I invite you to make a game that reflects those moments in your life that were meaningful, where you were content and cared for. I invite you to make a game that offers moments for players to reflect and be at ease. You don’t have to show it to me; you don’t have to share it with anyone. But I would like to be a companion in the journey towards cozier games, and I think others would, too, if you would have us.

It’s difficult and slow and I’m probably asking a lot from you. But if you try and fall short of your expectations, please know that I will still support and celebrate you. I care about you, and your work is but a small part of what makes you wonderful.

Good luck, if and when you’re ready,
— (your signature)

Thank you so much for reading,
Chelsea, Daniel, Jake, Dan, Tanya, Squirrel and Anthony


Game design patterns for building friendships

Leave a comment
Ported Posts / Uncategorized

In November of 2016, a small group of veteran game designers got together in a remote portion of Texas for a think tank called Project Horseshoe. Our workgroup dug deep into how design can help build meaningful relationships within games. You can read the other reports here:

Our group consisted of:

  • Daniel Cook, Spry Fox
  • Yuri Bialoskursky, Electronic Arts
  • Bill Fulton, Microsoft
  • Michael Fitch,
  • Joel Gonzales,


The issue
In many online multiplayer games, players enter as strangers and remain strangers. Due to a variety of unquestioned logistics, economic and social signalling choices, other human beings end up being treated as interchangeable, disposable or abusable. We can do better.

When we throw players into a virtual world without understanding the cascading outcomes of default human psychology, we are little better than an unethical mad scientist replicating Lord of the Flies. As game designers, we’ve been building destructive dehumanizing systems. We should take responsibility for the bullying, harassment and wasted human interactions that inevitably results.

Let’s instead design games that help strangers form positive pro-social relationships.

New tools
There’s a mature body of research going back to the 1950s concerning how to create systems and situations that facilitate positive relationship building between strangers. Given the right context, people will naturally will become acquaintances. And a smaller number will become friends.

Much of this research focuses on describing how friendship forms in observed communities. Or how an individual might go about developing friendships. We propose intentionally using these psychological insights in a highly scalable online game designs to engineer potentially millions of healthy player relationships. Many games accidentally separate players and decrease the chance of meaningful human contact. What if we design our games to be more socially meaningful?

We can’t force two people to become friends, nor should we want to. But we are in a unique position to build systems that create fertile ground for friendships to blossom. And by carefully nurturing positive relationships, we can simultaneously avoid naively birthing poisonous cesspools that actively fosters hate.

This paper cover a simple design checklist based off well supported models of friendship formation. Put it into practice and you will create games that build stronger player relationships and stronger communities. In addition to making the world a better place, your games will likely have better retention and improved monetization because you are creating value for your players that speaks to their deeply human psychological needs.

General Model

To build friendships, your game should facilitate four key factors. When these are present, friendships tend to form.

  1. Proximity: Put players in serendipitous situations where they regularly encounter other players. Allow them to recognize one another across multiple play sessions.
  2. Similarity: Create shared identities, values, contexts, and goals that ease alignment and connection.
  3. Reciprocity: Enable exchanges (not necessarily material) that are bi-directional with benefits to both parties. With repetition, this builds relationships.
  4. Disclosure: Further grow trust in the relationship through disclosing vulnerability, testing boundaries, etc.

What sort of friendships does this model cover?
We define a friend as another person with whom you have a mutually beneficial long term relationship based off trust and shared values.

There’s a spectrum of friendship ranging from acquaintance to best friend. Different cultures have very different definition for what it means to be a ‘friend’. Americans for example, tend to call relatively distant acquaintances ‘friends’ while a country like Germany may reserve the term for two of three closest relationship. In this paper, we treat friendship as a spectrum that ranges from stranger all the way up to deep intimate friendship.

In particular, we focus on the transition from stranger to acquaintance. This is the step that most often falters in modern game designs.

What types of games can use this friendship model?
For the purposes of this paper, we are interested in a specific domain:

  • Online: Players are not in the same physical space.
  • Mediated: A computer mediates all interactions between the players. Rich in person channel of communication like one might find in a board game or sport are not available.
  • Synchronous: Players are interacting in real time via keyboard, mouse, mic, controller, voice, emote, etc.

Other types of games benefit as well, but they have their own complexities that are outside the scope of this essay. Local multiplayer taps into high bandwidth interpersonal communication and often occurs between existing acquaintances. Asynchronous multiplayer relies heavily on a strong reciprocation loop to compensate for a weak sense of proximity.

1. Proximity

What is Proximity

The first factor to consider is Proximity. Social proximity is the likelihood of players seeing and having the opportunity to interact with one another in a game space. This space can be virtual like a chat room. Or it can be spatial like a room in a game match.

Think of proximity in terms of simple logistics. If players can’t see one another they can’t initiate the reciprocation loops and any friendship is impossible. Without proximity, friendship is impossible. In some sense this is an obvious requirement, yet in many games we create strong barriers to simply being together.

Concepts for Proximity

A high density game is one with a low amount of distance between players so they are likely to bump into one another. A low density game is one with a large amount of distance between players. Often we design in terms of ‘number of players’ and independently think about ‘size of map’. However, density, the ratio of these two factors, is often the key attribute to balance.

Frequent serendipitous meetings
Due to high density, people are likely to ‘randomly’ bump into one another repeatedly. This creates exposure and familiarity between strangers. Meeting the same person again and again feels like magical fate, but it is primarily the outcome of well designed statistics and logistics.

Crossing class, race and age boundaries
The single most effective method of creating friends that cross traditional social boundaries is to put two people together in close proximity. People form friendships with those that are nearby and if their choices are limited, they’ll form choices with those that would not be their instinctive (often biased) choice.

Connection to other requirements

  • Reciprocation: Being the in same space yields parallel play. This eventually leads to low cost reciprocation loops between players
  • Similarity: Being in the same place lets players observe similarity. Note that in studies of friendship formation, being in close proximity is a stronger predictor of friendship formation than being alike. However, the impact of distance falls off quickly and once players start rarely being close together, they will start forming friendships predominantly based off similarity.

Proximity Patterns

Player Identification
Other players need to be identifiable. If you see someone a second time, would you know it? Names, unique clothing, identifying animation or abilities all help players understand that they are seeing the game person again and again.

Persistent spaces
A consistent persistent space that players can join and then later rejoin provides a means for players to find and associate with players that they deem worthy of friendship. There are many variations of this:

  • Dedicated servers: Something like Minecraft has a vast number of player run servers. These create memorable locations tied to permanent communities.
  • MMO shards: A player is associated with a particular long lived world instance. This creates a cohort of players that advance through the content together and then to run into one another frequently.
  • Persistent sessions: In match based games, you can keep players together when the next match begins.
  • Chat rooms: A common chat room or group where players seen names also acts as a persistent space even though it is completely abstract in nature.

Shared Events
You can increase density by taking players that are spread across time and incentivize them to all show up during the same time. Many games suffer from low player density because concurrent players are spread across multiple time periods. A play session may only be 30 minutes (or less in the case of mobile) so even if you have 1000 players who play on a server, your concurrent player number would be less than 10. Think of your game in terms of concentrating player density across time.

Shared events help this situation by asking those 1000 players to all show up at 8pm on a Saturday night. Suddenly, your sparse world is full of players.

Recurring events
A shared event that reliably occurs every week at exactly the same time helps create that repeated interaction that is common with persistent spaces. Having a clearly published schedule of recurring events is a great method of increasing density and serendipity.

Persistent Cohorts
If you’ve got a matchmaking system, it can give priority to those that you’ve played with previously. Or if you have an MMO shard, the game can seed it with those that are started at roughly the same time period. The result is a group of players that are moving through the content together.

Opt-in persistent social groupings like a guild or a clan are another self selected space for those that are further along in their friendships. It is often a greater commitment to join these groups, but the result is frequent interactions in denser social spaces.

  • Guild halls create a small space for guild members to run into one another more frequently.
  • Guild chat focuses conversation between guild members
  • Guild targeted boss events provide focused group activities.

Elastic Instancing
Often we create instances or servers, fill them up with a cohort of players and then fail to remove the room when players inevitably churn out. This leads to a large number of low density servers and weaker friendship opportunities. Elastic instancing has the stated goal of maintaining an optimal density of players.

  • On demand server creation: New instances are only created if the concurrency is high enough. When new players start playing, we fill them into any open slots on current servers. When there isn’t enough room, we create a new server.
  • Server merging: If the population of server drops below some optimal threshold there is a mechanism for merging server population. This takes a huge variety of forms based off the game type. This is easier in non-persistent game since you can merge servers when each match ends. This is more difficult in persistent games.

Hubs and choke points
Players move around in many games. If you create a location they need to return to or move through on a frequent basis, they tend to run into other people more often. Think about your game in terms of how players flow through it. Hubs are central areas in a hub and spoke system that players must pass through. Often utilities like stores or guild features are located in or right off of a hub area. Choke points are similar to hubs in that players flow in from a broader lower density area or set of areas through a narrow location on their way to somewhere else.

Proximity anti-patterns

Lack of identification
Many games weaken identifying signals. For example, true friendship is impossible in a game like Journey because the identity signals are intentionally weakened. People swap in and out of a given game session without the player realizing that their partner has changed. Some MMOs have a fixed set of class art. You are a wizard or a fighter and all wizards look the game. This short circuits the player’s ability to identify their friend.

Fluid identification
Similar to lack of identification, some systems allow users to change their identifying characteristics on a regular basis. If the primary method you use to know if you’ve played with someone is their user name, and the system allows for freedom to cheaply change that user name, other players will not be able to track changes across time.

Disposable People
An important psychological considerations for persistent spaces is that players should have a strong belief that they will have future interactions with the people that they see. There’s research that suggests we have two sets of social norms: One for real people and another for ‘disposable people’; those that we’ll never seen again. These behaviors may be very close in the polite individual, but they can end up being negative and dismissive. If players see others a disposable due to proximity being low and repeat encounters uncommon, they’ll tend to act worse towards strangers. This leads to a downward spiral for the much of the community.

Large group sizes
Very large group sizes greater than Dunbar’s number (80 to 150) are difficult to comprehend. The overall principle is that systems need to operate at human scales (numbers and quantities comprehensible by a biological human.) We are ultimately building systems for people and homo sapiens have strong cognitive and physical limitation that we need to take into account if we want to produce the experience we desire.

Don’t fall for the engineering or marketing mindset that says bigger numbers are better. A guild system that allows for 100,000 members is functionally worse in most cases than a guild that is capped at 150 because you’ve likely reduced social density, created swaths of disposable people and generally built a system that doesn’t fit with human biological constraints.

Very dense group sizes
With dense crowds of people it is difficult to see a person, difficult to identify a person and difficult to track a person. In Realm of the Mad God, we had dozens of people piled up on top of one another. This made for a great feeling of being in a crowd, but it was hard to actually see your friends.

Many gameplay modes
When games create many gameplay modes, they create more game play surface area over which players are spread. This makes any sort of match making more difficult and results in lower concurrency for each mode.

A better pattern here is to rotate through the game modes so that everyone is playing the same mode at each point. Or tie modes to timed events. Players still get some variety, but the populations aren’t split up.

Frequent splitting of groups
In match made games, the match ends and players may be thrown into the matchmaking again. As a result they are matched with completely new players and thus any burgeoning relationship is extinguished.

Separating friends by skill
Games with a heavy skill component may match players in different skill categories. Or players that were in a cohort together are split because one player proves to be highly skillful.

There are many forms of gameplay that are enjoyable to mixed skill players. Cooperative games, team vs team games, party games, games of chance or discovery, build or creative games all work. Try making one of those.

Separating friends by progress
Games that focus on leveling and power acquisition often have very large power differentials between players. If two friendly players want to play together, they may not be able to because either the newbie is so weak as to be useless to the higher level player or the higher level player gets so little reward from helping out the newbie that the friendship is the waste of their time.

Barriers to repeated play sessions
A difficult aspect for many match-based games is to get the same people to play together again a second session. This point came up repeatedly as the key challenge in forming friendships within a typical multiplayer console title. Treat putting players together for multiple matches and multiple sessions as a critical design goal.

Artificial friendships
If we automate or manipulate these proximity processes too heavily, players may feel that their friendships are artificial and therefore less valuable. Heavy handed matchmaking, ‘friend suggestions’ or automated reciprocation loops cause players to imagine that their relationship is formed for purely utilitarian (or nefarious) reasons and trust in other players drops to some utilitarian level. To be fair, this is mostly a theoretical concern since as of this writing most games encourage friendships lightly or not at all. But as our techniques become more broadly practiced, this issue is worth watching out for.

2. Similarity

What is Similarity?

The second factor to pay attention to in our friendship formation model is similarity. Similarity is how closely we share various aspects of our personality and background with another person. The more similar one person is to another, the more likely a friendship will be initiated. On first sort, we judge another person based off their visible traits, their affiliation with known social groups and any values we infer based off our stereotypes. With increased contact, we also filter by communication style and personality (see OCEAN).

If social proximity is the barest logistical necessity to form a friendship, similarity is the the criteria by which we decide who we will invest in further out of all currently available options. We can only invest in so many friendships so we filter out dissimilar people. Without similarity, friendship is possible but unlikely.

If you believe in the value of multiculturalism or other philosophies that celebrate human variety, this topic may raise an eyebrow. However, people’s reliance on similarity to filter others is one of the more strongly reported effects across decades of study. However, we see this as a tool to create rich social tapestries from complementary backgrounds and not some preordained reinforcement of the current social order. Designers in virtual environments have immense control over what players see as similar. We should use that power to mold the societies we desire.

Concepts for Similarity

Similarity lowers the cost of social negotiation
Shared contexts, values, and identities bring along with them social assumptions, common language/vocabulary, and models for interaction. It is easier and quicker to negotiation a cooperative, mutually beneficial set of norms if two entities share a strong common base.

Perceived similarity matters more than actual similarity
Humans are remarkably poor judges of others. So they tend to rely on superficial details to determine if someone is actually similar. In studies, this perceived similarity is a greater predictor of long term friendship than objective measurements of similarity.

Similarity in virtual environments can be generated
In the real world, similarities are often difficult to change. Players bring along much of human history when it comes to various religious, racial and language differences. Surfacing that baggage immediately typically results in players using it to filter out possible friends.

Luckily, in virtual social spaces, the specific simulated cues that each player sees can be intelligently curated, often on a per player basis. The biases of the real world need not damage a first impression inside your game.

Self reports are often highly inaccurate
The traits that people say they look for in a friend are rarely what they actually use to filter out potential candidates. For example, comparable physical attractiveness and comparable intelligence correlates highly with friendship formation attempts. However, polite society looks down on stating that you are friends with someone in large part because they are devastatingly handsome. Much of the machinery of detecting and acting upon similarity is either sub-conscious or impolite to discuss publicly.

Similarity patterns

Visible Distinctions
The earliest element players latch onto visual similarity. Titles, achievements, badges, equipment, names all work. Think of your similarity signals in terms of depth engagement.

  • Glanceable: What do people see in the first 200 ms? This is the most impactful location for leveraging visual similarity. Silhouettes, colors, large scale animations are used by players to judge one another.
  • First session: What do people see in the first play session?
  • Multi session: What addition signals are revealed via special abilities or viewing the player in unique, uncommon situations.

Faction Identity and Conflict
A shared tribe create a strong feeling of acceptance. All social groups are composed of a core shared identity, a boundary that define who is outside the group and a set of others who are known to be outside the group.

  • Define a group identity. Determine how one player will be able to quickly display and observer membership. For example, in World of Warcraft, Alliance players all come from a specific set of racial classes. There are dominant color schemes and silhouettes that makes quick, accurate identification easy.
  • Define the Others, those outside of the group. In World of Warcraft, there is a clear opposing team, the Horde. They are shown in faction specific lore to be less worthy than the player’s current tribe. Differences are accentuated.
  • Define an expensive boundary for crossing between groups. This acts as an economic wall that encourages any resources to be directed back towards the player’s current tribe. Enforcing systemic costs for interacting with the Other results in increased polarization. If you are in a PvP situation and an enemy group can kill a player, they will naturally seek the safety that comes from belonging to a friendly tribe.

The result of a strong tribal identity with a clearly defined Other often results in strong friendship formation. They clearly understand who they could make friends. And they have clear reasons to build those friendship in the face of an organized adversary that would swamp an unconnected individual.

Note that factions lead to some of the ugliest aspects of human culture. The very aspects that make tribes a powerful organizing forces also result in hideous abuse and bullying of those they dehumanize. At potential fix is to use AI opponents in a PvE conflict. Or in survival type games, use environmental obstacles. Often it is better to Other a digital illusion than a real human being.

Shared experience
A shared experience also triggers similarity. For example, when players go through a boot camp or hazing ritual as an introductory experience, they can refer to that as a common moment. In an MMO, players might go through a particularly difficult dungeon and wear a token from it as a sign of pride. The higher the cost of the hazing, the more long term the resulting self identification. There’s an element of cognitive dissonance at work. A player thinks “If I invested in X, it must have been worth it.”

Hard-fought matches, difficult raids, long periods spent grinding or leveling all can work as shared experiences. Near-wins are more emotionally intense than a clear win. Brutal losses can also create definitive bonding experiences. Many religions use repeated stories of shared persecution that function as a means of increased bonding between members.

Shared Interest
Players who are players the same class or role within a game have a potential affinity. Or players that are on the same quest or have a shared public goal. In the game Realm of the Mad God, bonding was often as simple as two players shooting at the same enemy.

Establish Aspirations
Humans look to other humans when determining how they should act. And most of the time, they give greater weight to those members of their community that have high status, aka celebrities or leaders. By highlighting celebrities within your game, you create a template for players to to compare both themselves and strangers to.

Two things will happen. Players will start to conform to the ideals shown by the celebrities. And they’ll see others that conform in a positive light. Essentially the celebrities create a beacon of artificial similarity.

  • Publicly showcase players that fit the team’s desired ideals. Name, avatar and the emotional reason why they are important are key elements. Interviews, viral clips of how they play and other concrete elements help cement the norm you are trying to promote. Think of it as an advertisement that tells players how to act by giving them an example.
  • Beware of showcasing only top players on a leaderboard. For example, you might choose to emphasize norms like generosity, self sacrifice or community service. Leaderboard players can accidentally showcase negative traits like aggressively uncontrolled competition.
  • Give opportunities for other players to mimic dress, class, abilities of highlighted celebrities.

Similarity anti-patterns

Surface real world similarity can lead to premature disclosure
For example, highlighting that a player is a woman in real life might result in a spike in abuse inside the game. The intent may be to encourage women to find other women, but if it occurs too early in a relationship, the overall impact is negative. See section 4 on Disclosure for more details.

Negative Othering
Exclusionary group dynamics can calcify and reinforce the negative consequences of othering. Systems that create homogenous groups in opposition to other groups result in the following issues.

  • Poorly met internal needs. As social energy is dedicated to maintaining the group cohension, less energy goes towards serving individual needs. This results in churn.
  • Poor onboarding of new players. The barriers to entrance into the group actually hurt its growth since very few pass the increasingly rigorous purity tests. This result in the group’s membership churn not being replaced so you get declining player populations.
  • Stagnation. Rigid social structure means the pure group has difficulty adapting to environmental and social changes.
  • Bullying and abuse of those deemed outside the group.

3. Reciprocity

Our third factor in friendship formation is Reciprocity. Reciprocity is fundamentally about using iterative exchange to negotiate social norms and build trust. If Proximity and Similarity are filters on who becomes friends, Reciprocity is the mechanical engine that make friendship function.

Any reciprocation loop can be analyzed as a simple turn-based game between two players. Use these steps to talk about the reciprocation loops in your game.

Player A moves first

  • Player A performs an action that targets Player B
  • This action has cost to Player A: This is an economic cost in either tangible resources or time, attention, or social status.
  • This action has a benefit to Player B.
  • Player B observes feedback that result from Player A’s action
  • Player B updates their mental model of Player A. This includes a summary of historical interactions, aka a relationship.
  • Player B weighs the benefits of future action and makes a choice on what to do next.

Player B responds

  • Player B performs an action that targets Player A.
  • This action has a cost to player B
  • This action has a benefit to player A
  • Player A observes feedback that results from Player B’s Action
  • Player A updates their mental model of Player B
  • Player B make a choice.
  • The loop restarts.

That’s a single iteration. Reciprocation loops are typically repeated multiple times, accumulating economic and social capital to both parties. Learn to see them. Walk through them step by step to diagnose exactly where your social loops are failing.

Concepts for reciprocity

Exchange is substantially non-material in nature
The language of reciprocity comes from the world of economics. One might imagine that friend formation is reduced to a merely capitalist construct of exchanging material good and weath. Nothing could be further from the truth.

A valid reciprocation loop could include exchange of any of the following:

  • Recognition or attention: A shared glance is a reciprocation loop.
  • Common experience: A shared experience in which both react and see one another react to the same situation is a reciprocation loop.
  • Conversation: Two people talking is a reciprocation loop.
  • Complementary roles: A tank and a healer in an MMO exercise a form of economic specialization that costs neither side anything material. This ends up forming a reciprocation loop.

Medium of exchange
In order for reciprocity to function, there must be a medium of exchange, there must be a bidirectional flow between both parties. This covers a huge range of possible interactions.

  • Chat, Voice, Video
  • Visual space with movement
  • Trade systems

Perceived benefit
Both sides need to feel that they benefit from the relationship, if not short term, at least over the long haul. This need not actually be factually true. See asymmetry below.

Friendships fail when exchanges aren’t appropriately reciprocated
Each time an overture is made to another person and that overture is not returned, the relationship between those two becomes more distant. A failed reciprocation can take multiple forms

  • Player B ignores the overture. Communication is messy, so if it was low enough cost, Player A may attempt again.
  • Player B reciprocates, but does so inappropriately. They give too much or too little. They give the wrong sort of response. The negotiation of norms is going poorly and the relationship may end.
  • Player B explicitly rejects the overture. The relationship momentum falters and may degrade.
  • Player B uses the overture to harm Player A. Any relationship begins to degrade rapidly.

You need to design unreciprocated exchanges as much as you need to design reciprocated exchanges.

You also need to consider that human find making overtures risky and rejection emotionally painful. We are wired to form friendship and when we are rejected, it is one of the deepest cuts a person can experience. So when you design for failure, consider how to soften those failures. Consider tools like: Kindness-focused language in feedback dialogs, reframing the rejection, deniability or immediately redirecting to other relationship opportunities.

The good news is that lapsed friendships that lack negative exchanges are easier to restart than new friendships. You have a common base of social norms already negotiated. This acts like a foundation of similarity in boosting re-engagement of the reciprocation loop.

Self reporting is biased
This is a tricky thing to ask friends directly about economic aspects of their relationship. Friends tend to downplay any short term or medium term benefits so as not to jeopardize long term relations. Think of it in terms of game theory using the following strategies:

  • Someone signals short term interest: If one participant signals that they are reciprocating for short term benefit, the other participant may try to optimize for as much benefit to accrue to themselves before the relationship ends. Minor low cost exchanges are now weighted against the relationship endpoint and may not be initiated or returned. With this strategy, friendship quickly collapses.
  • Both signal long term interest: Alternatively if both participants signal that they are reciprocating for long term benefit, the minor exchanges are worth it when compared against any benefit that may pay off in the future.
  • Someone falsely signals long term interest: Now if one person is engaging for short term benefit and one for long, it still pays to signal that you are invested long term. Since if you signal your actual short term interest, the relationship enters into a failure cycle and collapse before any benefits accrue. 

This dynamic substantially biases any self reporting around friendship.

Symmetry and asymmetry
When friends describe their friendships, they take great pains to couch them as symmetrical. How one person benefits is always equal to how another person benefit. Due to the fact that self reporting on friendship is biased, our model of how friendships should be balanced is highly questionable.

Many social relations and exchanges are in fact inherently asymmetrical but reciprocal (parent/child, student/teacher, etc.). Many friendships are initiated by low status individuals seeking a relationship with a higher status individual.

Escalation of costs as friendship deepens
Friendships start out with very low cost overtures and then as each exchanges is reciprocated, the average cost increases.

This makes sense from an investment perspective. Early on, a person doesn’t know if the stranger will reciprocate. It makes economic sense to invest in many very low cost exchanges in the hopes that one of them will pay off. If most of them fail, it is fine since the cost isn’t high.

Later on, a person has established a history of reciprocation. They can be relatively confident that a long term associate will respond in a predictable fashion even if the exchange is of higher value.

Some friendships eventually falter as the cost of each exchange grows too high. But some will continue escalating to the point where nearly no cost is too much. This is seen in marriages, families, and some long term friendships.

  • Design a friendship progression curve for your game.
  • Put less expensive interactions at the beginning. Encourage players to build up skills first in safe spaces. Most League of Legends players play single player or cooperative PvE games first before they risk competitive PvP.
  • Defer high time and resources commitment interactions later. Raids open up after you’ve been playing the game for while.

Limited number of deep friendships
Since deep friendship come with expensive long term reciprocation loops, most people can only afford a limited number. Dunbar suggest that there are biological limits on how many people we can form relationship with and that these cluster in ever decreasing circles of friends.

Pick which groups you are designing for.

  • 1500 people: People whose face your recognize. These are lowest investment relationships.
  • 500 people: Acquaintances. People whose names you know.
  • 150 people: Casual friends. People you hang out with occasionally. This is this largest typical group size.
  • 50 people: Close friends. The sort you might invite to dinner.
  • 15 people: Confidants. The sort you’d tell intimate details of your live.
  • 5 people: Close support. These are highest investment relationships, but you only get a few.

Reciprocity patterns

Spatial positioning
In a game with spatial positioning of an avatar (like Diablo or any FPS), the mere act of trying to stay close creates an early stage reciprocation loop. A player moves to a location. This is an invitation. Another player responds by moving in the same direction. Such move and response actions are very low cost on the part of the players so they aren’t risking much by engaging. This is the primary form of reciprocation in a stranger-friendly game like Journey.

In games with rotation, players can also face one another. This is another social gesture that forms an early reciprocation loop.

Emotes or signalling
Games often include emotions like a wave or dance animation. One player will start with a gesture and other nearby players will either repeat the gesture or iterate on it with some contextually interesting variation. This may turn into a synchronized dance session or a private emote-based language that was negotiated over multiple play session.

Chat is one of the richest methods of building social reciprocity. By tapping into language, chat enable socializing, humor, information exchange, the establishment and reinforcement of norms.

Beware premature disclosure (see disclosure below)

Trade (Gifting)
Exchanging virtual goods allows for a wide range of material economic transactions. Players can become a reliable supplier or a reliable purchaser. In our capitalist culture, this form of relationship is familiar to many and thus players easily fall into the appropriate roles. Trade also opens up gifting and twinking, two practices in which virtual goods are exchanged for status or goodwill but not currency.

Negotiation heavy trade such as barter is often as much about having a conversation that builds a social relationship as it is about economic efficiency. Be aware that highly efficient, low conversation trade systems such as auction houses can actively remove reciprocation loops from a game and thus damage the social foundation of your title.

Mutual Support
When players can help out other players, they will often fall into patterns of reciprocal helping one another. One player covering another as they rush a point. In turn that player is healed by the person they helped. This tit-for-tat occurs even when players have symmetrical abilities.

An extension of mutual support is creating specialization for each player. Unique roles that create dependencies result in reciprocation loops. The MMO trinity of Healer, Tank, DPS class naturally clump together in order to increase their overall efficiency.

Allegiance systems
You can also build asymmetric hierarchies of mutual dependency. The MMO Asheron’s Call implemented a system where new players could declare their allegiance to more experienced players in return for help within the game. This created an improved new user experience and in return, the patrons earned a portion of their vassal’s experience. The patrons could in turn be vassals of higher patrons and everyone had a huge impetus to ensure that those below them did well. (

In the Xbox version of Shadowrun, players could resurrect dead players and earn a portion of their kills. However if the patron player died, all resurrected vassals would also die.

Face to Face interaction
In many real world studies simply being in the same space isn’t enough. You need to see another person’s face and be able to respond via glance or micro-facial expressions. This is not typically captured in games, but it likely will start to show up as VR and facial scanning technologies become more prevalent.

Reciprocity anti-patterns

Zero Sum interactions
When there are limited resources in play, a player is forced to choose between spending a resource on a relationship or keeping it for themselves. Early in a relationship, the perceived cost and sense of loss aversion makes players selfish so they are less likely to initiate experiments. Instead use non-zero sum interactions early on in player relationships and carefully introduce low cost zero sum interactions once players have formed stronger bonds.

Ideally, zero sum interactions are opt-in and used as an explicit means of taking a relationship to a new level. For example, a player might choose to pay a fee to help level up a guild. The currency used for the fee is useful elsewhere for selfish purchases so the player ends up signaling their sacrifice and dedication to the group above their individual needs.

Trade scamming
In systems that allow the trade of material goods, be wary of tempting players to scam one another. Players with weak bonds will see an unsecured trade as an opportunity break trade promises by taking something without giving a promised item in return. This reduces trust in the environment and makes it difficult for all players to form friendships.

A better system is a secure trade window that requires both players to confirm their promise and then reliably automates the exchange in the background. Ask yourself: Do the designed methods of player interaction facilitate trust? Do they protect against the bad actor’s worst instincts?

Lack of predictability
The bigger picture here is that good social norms, the foundation of friendships, rely on predictability. We build a model of how another person will interact and then base complex and expensive plans how know that person will reliably react as expected in a given context. When player behavior is encouraged to be random or unreliable, it is much harder for players to form social norms. You perform a gesture toward another player and get something random back instead of converging on a predictable social pattern.

For example, if your guild just killed a huge boss, there might be a social norm that you divide the loot. However, the system is left open ended and instead a single player takes the loot and leaves. The very player freedom that exists at that decision point results in highly unpredictable outcomes. Some games can survive this (games like Eve have various forms of community censure that turn turncoats into economic and social pariahs). Most games treat these moments as incidental social friction not worth polishing out. However, these ‘minor’ issues slowly poisons the whole community’s ability to make deep long term friendships.

Extreme power differentials
In many leveling-based system a large power gap forms between new players and old players. This economically segregates communities and in extreme examples there is nothing that a powerful player needs or wants from a low power player. The game design has created an high economic barrier between two humans that is totally artificial and unnecessary.

A good tool for solving issues like this is to ensure opportunities for economic and social dependency between any player in the game independent of power level. Create ties between players that make it beneficial to become friends. Hunt down and eradicate all systems that force players to dismiss one another as useless.

Over designing for freeloaders
A freeloader is a player that benefits from a community without contributing materially to its success. American culture specifically puts a large amount of effort into reducing freeloaders, often at the expense of community. By policing and punishing the few, the community becomes more selfish and less likely to form positive friendships.

Most community systems, especially ones based on non-zero sum resources, are remarkably stable in the face of moderate free-loading. Players may complain due to their existing cultural biases, but the end result is a stable and happy society. Ask yourself if the freeloaders are actively hurting other players. If they are, see if you can shift the design toward non-zero sum interactions. If they aren’t, feel free to ignore the problem and stop wasting precious design cycles on a non-problem.

High initial interaction costs
If an early interaction is too expensive, players won’t initiate the reciprocation loop. One solution is that the system can pay the cost early on to prime the pump. For example, social games allowed players to give gifts to other player, yet those gifts cost the giver nothing. They were created from thin air.

You do need to be careful as then people can think that they are being paid to be friends. When priming the reciprocation pump, Give the absolutely minimal, non-distorting incentives. Slowly increase what how much the system subsidizes that first interaction and look for behavior shifts at each cost increment.

4. Disclosure

Our final factor in friendship formation is safe disclosure. As players get deeper into a relationship, the nature of the reciprocation loops change from superficial mirroring to riskier trust building interactions. Key to the creation of deep friendships is the ability to friends to disclose new or secret information to another person.

Games that lack the tools for disclosing personal info between two people will never facilitate deep relationships. They may never even facilitate shallow relationships since players see that there will never be a long term future for any relationship they form in the game. However, disclosure is a highly risky action and teams will often try to cut it from their designs. Sharing information before a relationship is strong enough can result in broken or antagonistic relationships.

Concepts for Disclosure

Risk is inherent to disclosure
When a person discloses personal information to another player, there’s always the chance it will break the relationship. Up until this point, players have typically been performing low cost, non-zero sum interactions that are tightly constrained by game systems or social convention. Personal information brings in external history, gender, age, religion, race, values and other delicate factors that may cause the other player to fail to reciprocate or otherwise pull back from the relationship.

If failure to reciprocate hurts emotionally, failure to reciprocate a personal disclosure hurts substantially more. Disclosure is a laying bare of the soul for many and the fear of rejection is immense. If your game moves relationships to this point, you are making more than mere entertainment. Your game facilitates moments that uplift or scar players in formative ways.

What constitutes disclosure is highly specific to a given person and relationship
The exact contents of a ‘disclosure’ depends on what might threaten a specific relationship at a specific stage with a specific set of participants. So we are dealing with an ill defined concept. However, the participants have a refined sense of what constitutes a disclosure so it is best to let them decide what to disclose and when.

Disclosure patterns

Rich communication tools
The concepts involved in disclosure cover a huge breadth of the human experience. Emotes aren’t enough. To enable relationship building levels of disclosure you need to give players rich communication channels.

There’s substantial discussion within many design teams on whether or not to include chat. The costs are easy to list. Chat that happens too early in a relationship can trigger unpleasant early disclosure and abuse. It can be used to spam players. Children using chat are at risk of being contacted by sexual predators. There are legal and moral considerations. Developers need expensive moderators or filters to manage these downsides. Many modern teams look at this list and run as far away as possible.

However, when you cut out chat, you are gutting your long term community. Players will remain strangers and never form long term bonds with one another. Every relationship is at best like a game of Journey where anonymous people have fleeting encounters that never result in any long term impact or friendship. Remove chat and you remove 95% of all positive social behavior.

When we build human systems, we should be wary of building systems that filter out our humanity.

Luckily there are ways to have your cake and eat it too.

  • Make the tools for disclosure opt-in: Unlock chat between two people after they both agree they want their relationship to go further.
  • Give rich tools for opting out: Give players robust tools for filtering and blocking other players that abuse chat.

Quiet Opportunities to Talk
Relaxed environments where players are doing some low intensity activity will naturally result in players chatting with one another. In action games, players are often alway highly engaged with the moment to moment gameplay. There’s no space to chat. As a designer, you need to explicitly carve out these slower moments in your game pacing.

Common examples include

  • Healing time in MMOs.
  • Lobbies in FPS
  • Post match chat
  • Private chat channels
  • Guild chat channels

Mechanics that encourage disclosure
Simple interactions derived from party games can provide people with personal information about yourself like humor, status, competence, history, etc. After all, a party game is just a mechanic to encourage personal disclosure.

  • Disclose or Punish: This is a typical truth or dare type activity. Note that even though it encourages a player to disclose, they always have an out so they aren’t forced to prematurely disclose something.
  • Safe spaces: Create spaces where anything can be said but where acting on that knowledge outside the safe space is highly inappropriate. Confessionals and psychiatrist sessions follow these rules. In Japan, people are encouraged to go out drinking with their co-workers. It’s an established norm that when a person is drunk, you’re not meant to take what they say personally, which allows people to provide feedback without repercussions.
  • Open reciprocation loops: If you give something a person and then request voluntary disclosure, they are likely to participate in order to complete the reciprocation loop.

Mechanics that loosen inhibitions
These are less common in computer games, but very common in real-life

  • Wearing silly outfits: Anything that shifts a player out of their current social context and identity lets them experiment with new roles.
  • Alcohol: Moderate drinking tends to loosen tongues. Note that this may risk premature disclosure.
  • Physical interactions: Many icebreaker games involve breaking through personal spatial boundaries. This rapidly creates feelings of intimacy that otherwise might never appear.
  • Commitment activities: Have a player do something rather difficult or expensive. Then put them in a place where they invalidate their personal and emotional investment unless they disclose.
  • Group encouragement: If you can get a large group of people apparently disclosing, then an individual will feel more comfortable with disclosure.

Disclosure anti-patterns

Premature disclosure
System often discloses information about a person before they’re ready to share that information. The designers often think they are being helpful, but in reality they are forcing reciprocation loop to jump to an advanced stage before trust is built. The result is typically highly negative interactions between strangers.

When a player doesn’t have trust built up with another person, they use any subtle clues to activate stereotypes. Stereotypes aren’t inherently bad; they are merely pre-existing schema that are used in the place of actual experience to quickly determine how to act. However, negative stereotypes end up destroying opportunities to create friendships based off personal experiences with another person.

Example of premature disclosure

  • Showing real name. Real names include a variety of personal information about country, gender, and race. Let players select their own names or autogenerate a name.
  • Defaulting Voice Chat to ON: Voice can reveal age, gender and native language. Default it to off.
  • Showing location. Location can show nationality. Don’t show login location.
  • Purchased items (in F2P): Showing a player has purchased an expensive item. Or that they have only cheap items. Ensure items that can be purchased can also be gotten through other means.

Highlighting dissimilarities
When a user discloses or has information disclosed about themselves, it may in turn expose any dissimilarities they may have their current friends. This can cause the friends to rethink the relationship.

Bringing in non in-game similarities or relying on default real world similarities
Disclosing non in-game or real world similarities and assuming that they will carry the same weight in the game as they do outside of it


So far we’ve considered a lot of theory about how friendship works and how it might be encouraged within a game. However, in modern game development, it is not enough to theorize and then build something. We also need to measure if we’ve achieved our friendship goals. And then when we inevitably realize we’ve missed the mark, we can use the tools covered in previous sections to iterate towards a better state.

This leads to a vexing question: What friendship metrics can we measure across our games?

We want to measure behaviors that may indicate a ‘friendly’ relationship between players in multiplayer games. Because we want these metrics to apply to most games, we will avoid ‘in-game’ metrics, which would have to be customized to the specific design of the game.

Key concepts in measuring friendship

Co-play experience
People playing together.

  • Co-play: 2 players playing in a WoW dungeon together
  • NOT co-play: 2 players in different WoW zones chatting

Repeated co-play experience
People playing together after having played together in a previous play session. We’ll refer to the first co-play as co-play(1) and the second as co-play(2). This extends up to co-play(N).

  • Repeated co-play: 2 players playing in a WoW dungeon together the day after completing a quest together.
  • NOT repeated co-play: 2 players playing in a WoW dungeon together immediately after completing a quest (e.g., no substantial break between them)

‘Friendship’ behaviors
Behaviors that imply an attempt to initiate or lengthen a co-play experience, or that may lead to a co-play experience in the future.

  • Friendship behavior: Invite to a group; staying in a group to continue co-play.
  • NOT friendship behavior: Attacking an enemy; healing a teammate

The challenge of strangers
For most commercial games, marketing campaigns used to acquire customers end up bringing in mostly strangers. So any friendship systems need to be tuned at launch to deal with large populations of people who don’t know one another.

There are methods of important friends into a game but often the “Friend Graph” in a social network like Facebook maps very poorly onto the “Activity Graph” of a game, especially a new game.

The challenge of Co-play(2)
Looking across many games (and decades of design experience shared between all the authors) we observed a key challenge: Getting players to go from Co-play(1) to Co-play(2). Matchmaking creates co-play(1) with strangers very well; the hard part is getting people who played together once, to play together another time.

Existing design solutions are weak and teams rarely if ever measure this critical statistic.

Metrics for measuring friendship

How much ‘friendship’ is happening in the game?
This represents an overall metric of ‘how much repeated co-play’ is happening in a game. This metric applies more easily to discrete session-based games (Call of Duty match) than larger game experiences where players may be present but not co-playing (different WoW shards; same WoW shard but different zones). A way of quantifying this:

  • % of people in a session who the player has played with before. This is a representation of how many ‘familiar faces’ are in a match. If a player has never played with anyone in the match before, that match as a 0%. If a player has played with all the other players, then that match is a 100%. Notes:
    1. Multiple matches in a row with the same stranger should NOT count as a ‘friend co-play’ experience. A reasonable break between sessions is necessary to establish whether the co-play experience is intentional.
    2. This is a personal property; other players in that same match may have different %, depending on their unique social graph.
  • Average % of friends across all matches, by player. This a representation of how ‘friend-filled’ a player’s experience is with the game. It can help identify who is having a lot of intentional co-play experiences (playing with ‘friends’ vs. incidental co-play experiences (playing with a constantly different set of strangers). Sudden drops in this metric may indicate an attrition risk (player has lost of a co-play partner).
  • Global stats can be computed across all player-matches. This is a representation of what the typical player’s experience is of repeated co-play. It is probably most useful to identify the % of players who are at what thresholds of amount of ‘friend-filledness’ in their play experience.

Note: these metrics assume that players are repeatedly playing together intentionally, and were not put together by the system repeatedly.

Measures for pre-cursors of “intentional co-play”
Beyond the above binary metric (intentional co-play: Yes/No), there are some useful pre-cursor metrics for likelihood of intentional co-play in the future:

  • Have the other on a list. Being on a ‘Friends’ list, or a ‘follow’ list, or guild list, etc. all enable better ability to do other behaviors that are pre-cursors to co-play. However, a large friends list does not necessarily result in more co-play.
  • Invite the other to co-play. Inviting someone to co-play is (obviously) a good pre-cursor metric. Some additional measures:
    1. Co-play invitation gets accepted.
    2. Accepted invitation result in co-play immediately.
  • Attempt to communicate with other. Sending a message, talking, etc. may all increase chances of future co-play. However, some communication does not lead to play (idle chat), or may even decrease the future co-play likelihood (rude chat).
    1. Response from other. Communication attempts that receive a response are often (but not always) more likely to lead to a future co-play experience or future precursor behavior.
    2. Note: sentiment analysis (algorithm to determine the positivity-negativity of text) is becoming more accurate and faster to do, and so measuring these kinds of precursors is becoming increasingly feasible.

Examples of ‘Friendship’ behavior metrics, in game
Because in-game ‘friendship’ behaviors are specific to the game design itself, it isn’t possible to do a framework that is complete. The list of metrics below is intended to be examples for how to do that.

  • Gifting. In games where gifting is possible, gifting can be considered either a pre-cursor to co-play, or even co-play itself.
  • Assisted kill. In games where killing enemies results in ‘assist’ stats, it is possible to determine which player was ‘playing with their teammates’ more than others.
  • Vote-Kick called. In games where people can kick a teammate off the team, which players call votes on each other, and how they vote are good indicators of anti-relationship behavior.

Case study
Reinforcing in-game relationships via displayed metrics in Shadowrun.

The basic Shadowrun resurrection mechanic worked as follows:

  • Player 1 has a cost to resurrect player 2.
  • If Player 1 dies, then player 2 dies.
  • But, player 1 gets half of the money player 2 makes.
  • Goal: Make transparent system, system is revealed through stats.
  • Goal: Caused gratitude to be felt. “Did they exchange Packets?”


“Friendship” systems deal with potentially intense emotional territory for players. The concepts we discuss in this paper should be treated with care. You are dealing with real humans and real emotional outcomes.

Most friendships formed in games will only be acquaintances
We use the word ‘friend’ but in truth the chances of making a deep friend in a game are very slight. We simply don’t have the mental bandwidth (see Dunbar’s groups) to have that many deep friends. So more likely is that our games are creating shallow networks of friendly acquaintances. However, think of the game as building a friendship funnel that players progress through. It isn’t a bad thing if only a few make it through to each deeper stage of friendship as long as some make it through.

Players may grow wary of overt manipulation
People dislike other people telling them they should be friends or pushing them towards friendship. Software can tell players things about themselves they don’t really want to know. For example, don’t have software define things like a marriage system and then tell two people they should be married. Instead, create opt in systems that encourage buddy behavior. Then give them tools to create ceremonies or the ability to mutually opt into a public badge that say ‘married’.

Asheron’s Call encouraged aggressively trying to recruit a lot of people hoping some of them stick. Backlash risk of this is once newbie finds out what other person was getting in return. “Did you just want me because I’m rich?” causes you to question other relationships. People smell out rubber bands. Create plausible deniability of purely economic behavior when encouraging friendships.

The relationship between behavior and affects
If you have two people who communicate a lot, it could be constant fighting! Be wary of numbers going up if you don’t track why they are going up. The classic example of this in modern times is the dramatic collapse of games at Zynga even though internally key metrics were increasing.

Grief-test your systems
The systems that help people form powerful friendships are very open to abuse. The need for disclosure in particular causes issues, but most of the anti-patterns listed above have some elements of griefing or abuse. Assume players will attempt bad behaviors and have plans in place for when this occurs. If your systems assume humans are always angels, you encourage their demons.


We believe two things when we discuss friendships:

  1. The facilitation of meaningful relationships between other human beings is a noble design goal.
  2. Games are uniquely suited to facilitating relationships.

To make friends, you need multiple people, a reason to bring them together and some form of repeated mutually beneficial interaction. Multiplayer games have all these elements. Every piece of a game can be designed to remove walls and build social connections. What an opporutnity!

  • We can design our matchmaking and logistics system to encourage proximity
  • We can design our social signaling, characters and tribes to generate perceived similarity
  • We can design the economics of reciprocation loops at all stages of friendship formation
  • We can incrementally enable safe disclosure based off idle friendship formation pacing.

Often we think of computer games as a single player medium for storytelling or some other evocative experience We put games in the same category as books, movies, comics, etc. However, it is also interesting to think of games as intentional human processes; rule-based machines composed of living, breathing, growing people. They operate on the same scale as sports, religions and governments. Such engineered human processes can help players thrive in designed virtual spaces and ultimately in their real lives.

As game designers, this is one of our great powers and responsibilities. We design these machines. We are responsible for growth and nurturing of the machine’s players and communities that they form. The human process of friendship formation is an essential game design tool. Wield it wisely.

Other reference material

Early theory of friendship formation
Festinger, L., Schachter, S., Back, K., (1950) “The Spatial Ecology of Group Formation”, in L. Festinger, S. Schachter, & K. Back (eds.), Social Pressure in Informal Groups, 1950. Chapter 4.

Why do we form friendships
“From an evolutionary perspective, friendships may be seen as an unnecessary and costly relationship that involves altruism to a non-kin, non-mate individual who may contribute little to an individual’s reproductive success.”

Social media’s effect on the math of dunbar’s number friendship

How we evaluate the value of a person when considering friendship

  • Stimulus: What do we see on the surface. Physical attraction or similarity
  • Value: Compare values. Do they value the same things as we do.
  • Role: Do we have complementary roles so we can form a working relationship.

Only half your friends consider you a friend
Friend graphs are often non-bidirectional. However, they tend to be presented as equitable in order to preserve the network for future opportunities.

Social Penetration Theory
“As relationships develop, they penetrate deeper and deeper into private and personal matters. This exposes vulnerabilities, so trust has to be developed along the way.”

Weak ties
“In the familiarity of strong ties we use simple restricted codes, where much is implicit and taken for granted. In communicating through the weak ties, we need more explicit elaborated codes for meaning to be fully communicated. When elaborating, we have more scope for creativity and the thought that it stimulates makes innovation more likely.

The more weak ties we have, the more connected to the world we are and are more likely to receive important information about ideas, threats and opportunities in time to respond to them.

Societies and social systems that have more weak ties are more likely to be dynamic and innovative. If the system is mostly made up of strong ties, then it will be fragmented and uncoordinated.”

Selection of friends based off Big 5 personality factors
“…individuals high on Agreeableness tended to be selected more as friends. In addition, individuals tended to select friends with similar levels of Agreeableness, Extraversion, and Openness.”

Real names lead to increased harassment

Building Web Reputation Systems

Autumn of Indie Game Markets

Leave a comment
Ported Posts / Uncategorized
Photo by Rosa Dik

Ah, the fall. A time to reap what has been sown and contemplate the cycles of the seasons.

If you are a smaller game developer, you’ve likely noticed some cyclical shifts in how we make games. Games are looking nicer than ever, don’t they? That quality bar keeps creeping higher. With so much work to do, your team is a bit larger. And with so many mouths to feed, it feels riskier to lose everything experimenting on wacky new game mechanics. Luckily, it is pretty clear which genres will yield the breakout hits you need to keep going. It is too bad that there’s a such an abundance of similar games; it feels like you can’t even give them way.

What changed?

Remember when we had a revolution? One person teams could make original games with minimal content and strike it rich. Doodle Jump was a thing! A hit indie game like Braid cost a minuscule $200k to make. A developer and some lovely art and there was a complete top tier game. Press wrote about it.

But it feels if such games were released today, they’d likely be left to rot in obscurity. A modern hit by a “small” team is a game like Battlerite. 25 developers, lush 3D graphics, external funding. An order of magnitude increase in costs over a period of eight years.

To everything there is a season, and game markets follow predictable patterns of growth, harvest and if you’ve been luckily enough, stockpiling for the coming frost.

Have you been making games for less than 10 years? Are you a newer smaller indie developer who has only ever known the bright fields of opportunity known as Steam, console downloadable or mobile platforms?

Here’s what is coming. Here is what happens when game markets mature.

Memories of spring

Historical context matters.

A new game market opens when a new way of reaching eager players appears. In the early 2000s, digital distribution was a technology that cracked opened an industry previously dominated by retail sales. Apple and Google enabled phones to download games. Microsoft, Sony and Nintendo enabled consoles to download games. And Steam created a cohesive and reliable ecosystem for PC players to download games.

If you don’t remember the retail era it is hard to overstate what a radical change digital distribution was to the dominant business models. In retail, about 15% of revenue went to the developer. The rest goes to marketing, publishing and the retail store itself. This creates a power differential that tends to squeeze creativity out of game developers. Forget tales of wide-eyed idealism. Retail game development was a factory job that churned out games tailored to the whims of a giant box shipping machine. This was a mature market with most major game developers owned art and soul by middlemen publishers or platform owners. AAA still follow this model to a large degree. Good people, bad system.

Two things happened when digital distribution hit. For the first time in ages, we saw high demand and low supply.

High demand: Platform owners pushed their new distribution platforms heavily. A platform much preferred a guaranteed 30% cut of digital, especially when compared to a paltry 0-20% cut of retail. Valve bundled Steam with their top selling games. Microsoft gave away prime real estate on their console dashboard. Apple and Google directed users to go through their storefront in order to do pretty much anything. The result is a torrent of customers flooding through these digital stores wanting to buy cool stuff for their cool new toys. Put a pretty picture and a buy button and bam, you’ve got a sale.

Low supply: But there wasn’t anything to buy. A lot of traditional game publishers didn’t want to risk being beholden to some new platform master. Every digital storefront is essentially a monopoly with the potential to exert absolute dictatorial control. So most publishers held back. A few fringe game developers put up games. These were the hippies and hobos whose niche products never broke into the more mature retail markets.

And their games sold like hotcakes. In large part because there was nothing else to buy. For a while it felt you could put almost anything up on a digital market and turn a profit.

Short hot summer

With digital distribution, anyone with a computer could make a game and release it. And because they kept 70% of the revenue, they needed to sell a lot fewer copies to make ends meet. This means lots of little game companies. Call them ‘indies’.

Most were untrained. They didn’t understand how to run a business. Many had never made a professional game before. So they experimented, often wildly. Bizarro mutants popped up. Journey. Day Z. Tower Defense. What can you do with the internet? Or Flash? Or a touch screen. Or a one person team? Who knows; let’s just try something. Will Wright, gushed about the “Cambrian explosion”. New genres were born. That was 2008.

What a time. I look back on it fondly.

End of the growing season

Low barriers to entry
But low market barriers mean new developers just keep flooding in. And the nature of digital distribution means games never truly expire. So the back catalog of great games grows larger and larger. This is no longer a low supply market.

Fixed demand
Nor is it a high demand market. Consoles are stable. Smart phones (aka phones) are no longer setting growth records. PC sales are dropping. All those digital customers are a known quantity, divvied in zero-sum fashion across the various DRM locked platform fiefdoms.

What happens to a market when demand is fixed and supply is high? Competition. Here’s the traditional logic. The following sequence has played out across thousands of games and dozens of markets.

  • Standardization: Players form communities around the most popular game types. This creates a standardized demand.
  • Competition: Developers try to capture the entertainment dollars of these communities by releasing games in the same genre. For example, they might release a MOBA.
  • Winner takes all: Players gather around one or two high quality, well marketed examples within genre. Those games earn the vast majority of all revenue.
  • Escalating costs: In order to win that top spot, Developers invest heavily in art, narrative, marketing events and monetization. Maybe you can beat your competition by simply doing more.
  • Bloat: This results in larger developer team sizes. Larger teams burn more money, leaving less margin for mistakes.
  • Risk avoidance: A culture of risk avoidance dominates. You must make proven games with proven themes resting on proven mechanics for a proven audience. Layers of decision hierarchy grow to eliminate exuberant impulses. ‘Wasteful’ experimentation is deprioritized. All focus is on servicing the nuanced needs of expert (high value) players in an existing genre.

What success looks like
There are three broadly successful long term strategies for independent developers in this newly competitive market.

  • Become a genre king: Have a hit game in a popular genre. Invest those profits in ensure that you have the best developers, community and marketing to own that audience. Set the standard that all others hope to achieve. Be what Blizzard was to MMOs. If you pick the right maturing genre, you can gain 10 to 20 years of stability.
  • Dominate a niche: Find a niche that only appeal to a wealthy but passionate audience. Become hyper efficient at serving that niche. This isn’t so different from being a genre king except no one cares about you. The press barely cover you. The broader population of gamers doesn’t really know you exist. But a small devoted community cares. So you scope your company to the tiny size it needs to be to serve a tiny market. Artemis Spaceship Bridge Simulator or SpiderWeb’s retro RPG games are good examples.
  • Manage a brand: There are a handful of companies that have a powerful brand they used to secure funding. During hard times, they essentially freeze dry themselves. This minimizes costs until the next deal comes along. Jackbox is the most common game industry example.

False success of having a hit game
There’s a ton of money flowing through a maturing market and occasionally it arcs over to the random indie in the right place at the right time. Zot! A jigawatt of revenue powers them for years(!) without additional income.

But the result is a lesson in exponentials. Ever play one of those new fangled idle games like Cookie Clicker? As markets mature, escalating exponential costs rapidly consume existing savings. For example: A top shelf ‘Triple-I’ indie’s last game cost $200,000. They made back $2,000,000 in sales. But their next game costs $2,500,000. Maybe they make that back also. Maybe they don’t. The money in the bank only gives them 1 or 2 additional swings at bat, not 10.

We now use the term ‘Triple I’ for medium sized teams that had hit games, but we used to call that same spot in the ecosystem ‘midtier developers’. They all died off as markets continued to mature. It becomes increasingly hard to roll a hit every time. In the end, they had no sustainable advantage.

Selling the farm
So not everyone can stay independent. There are three common outcomes for those forced to give up ownership.

  • Hobbyist: The team becomes a non-commercial endeavour. Either people get a day job and work a few hours at night. Or their family support them. Or they get grants from some institution interested in their work. Or they make games as students and change careers later.
  • Hire yourself out: The team becomes a contractor to someone with money. This can be via a publishing deal. Or via outright purchase. Or you actually sign a contract to perform specialized labor like porting or multiplayer development. Mega studios love hired help.
  • Extinction: The team goes out of business. That whole ‘indie’ thing was neat while it lasted.

First frost

You may be curious what winter looks like. Here’s what is coming up for PC, console and mobile.

Consolidation: When a bigger company eats a smaller company..or a smaller company implodes and a bigger company hires their employees, we are seeing something called consolidation. Lots of little studios turn into a smaller number of bigger studios.

Consolidation is a longer term process that will play out over the next 4 to 8 years. These forces don’t apply equally to every team. Some developers earned enough from a hit game they can ride along for many years without confronting their inability to make another hit game. Others are willing to starve for a few years longer before they make any hard decisions. Be patient.

Distribution scarcity: It has already become increasing difficult to get your game in front of new players. The sheer number of games is part of the issue. Also audience capture and advertising cost (see below) limit the general availability of free customers.

Audience capture: The available audience will actually shrink as high value players are locked into long term service-based games like MMOs or other F2P titles. A player doesn’t ‘beat’ a game like Clash of Clans; instead they play one game exclusively for years. F2P companies will attempt to stretch the lifetime of their player to decades. These players are no longer looking for a fresh new games so they are typical unavailable to studios making new games or trying to replace churned players.

Majority of studios priced out of buying ads: The ad market sells its inventory to the highest bidder (across a myriad of categories) And for games, the highest bidder is the game with the strongest Life Time Value (LTV). Do you have a high LTV game in a particular category? Great, you can buy ads that juice your player acquisition. If you have a low LTV game (all premium games, most experimental games, most independent games) effective ad-based distribution is priced out of your reach.

Fewer, bigger hits: As the market consolidates around a handful of high value genre leaders, they will earn enormous amounts of money. The downside is that fewer small developers will capture enough sales to stay independent.

Rise of new publishers: Larger organizations with strong marketing and business development can mitigate some of these trends. They also can build portfolios so that if some games fail, successes still keep the whole afloat. That organization usually is called a publisher. Expect a number of publisher to start snapping up contracts for games from the more capable indie developers. Indie developers get cash to offset the risk of their game failing and and publishers get another chance of owning a hit game.

Rise of first party: Longer term platforms will start taking full ownership of any genre that is a guaranteed money maker. This vertical integration pays off. Platforms can capture all revenue that goes through the game, direct players to their games via promotional spotlights and reduce the riskiness of dealing with a volatile 3rd party developer.

Future Springs

We should celebrate the perennials planted during this amazing cycle. Or at least the tulip bulbs that may one day bloom.

Grassroots game development will continue to thrive
I don’t think we’ll ever go back to the bad old days of early 2000 where ‘breaking into the game industry’ was an actual barrier. Several trends mean the flood of new developers will not cease.

  • Tools: The cost of tools has dropped dramatically. And the tools that exist such as Unreal or Unity are of unprecedented power and polish. Anyone with time and passion can makes games and I suspect it will only get easier.
  • Schools: Students want to make games. Schools can charge those student enormous fees to teach them how to make games. This dynamic will exist independent of whether or not there are paying jobs waiting for those students.
  • Open distribution: There are multiple ways to make your game available to knowledgeable players. Steam, Android and iOS stores have minimal gatekeeping. Sites like have no real gatekeeping. The vast swath of humanity that doesn’t know about your game will never find out about it from these locations, but at least it isn’t blocked from publication. For the hobbyist developer, even a couple dozen downloads from friends and family can be inspiring enough to encourage further game making.

Expect a situation closer to what we see with writers, painters and musicians. Schools enable the necessary but time intensive acquisition of game making skills. The commercial market for those skills remains difficult to break into without elite level portfolios. However, there’s still a vast community of extremely low income developers making games because their passion is stronger than the need to be wealthy. In my dreams, this group of game making hobbyists regularly gets together for wine and moral support. And maybe even funds the occasional indiegogo when one of them needs a new liver.

There will be new markets
VR is one obvious new market. VR isn’t quite able to stand on its own, but platform owners seem committed to market building. If they collaboratively spend a billion or so to seed VR content, that’s a new billion dollar market for game developers.

And VR is not one new market. A rolling wave of multiple VR and AR markets will appear over the next decade as new technology leapfrogs past efforts. Each will be characterized by tech giants engaging in market building. That’s an opportunity. Early PC development was likely the most similar sequence. We can have multiple Cambrian explosions.

The seasons turn

I hail from Downeast Maine where growing seasons are short and harvests valued. The spring is a (muddy) revelation. The summer a miracle. Even fall is greeted with a delighted grin. Yes, the wind blows so hard it is hard to walk straight. Yes, the frost will kill our gorgeous garden. But if we’ve planted well, the root cellars are at least full. And we’ve got hot apple cider.  And if we haven’t, we’ll do what we need to do to make it through. Even if that doesn’t involve owning our own garden.

The key to my admittedly insipid joy is to realize that the world runs in cycles. We can bemoan the loss of summer, but it does little good. Instead, as winter settles in, put wood in the stove, put on some tea and let the infinite snow silence the cacophony of the world. Take some time to think. What did we do wrong during the last big opportunity? Take some time to dream. What would we do right if we had a chance to grow again? A long term view means that there will be many seasons of growth, harvest and frost.

Some form of spring will return eventually.

take care,

Minimum Sustainable Success

Leave a comment
Ported Posts / Uncategorized

Let’s dream for a moment about sustainable game development.

Game development is inherently unstable. Technology, markets, profit margins and teams shift regularly. Any of these can quickly destroy a previously comfortable business. Individual game developers end up dealing with unexpected layoffs, last minute moves across the country (or across the world) and a level of uncertainty can damage our relationships and long term happiness.

In order to simply make ends meet, you end up compromising your dreams, for years. Or decades. Game development exemplifies Schumpeter’s creative destruction on an accelerated scale with intensely personal consequences.

So what is required to build an oasis? A place where, at minimum, one might make games at least without having your beloved team or your bank account regularly exploded.

This essay covers some of numbers behind reaching success as a developer of premium games in the current market. I don’t offer solutions, but you may find some of the concepts useful.

The uninteresting case

There are obvious examples of extreme success. If you happen to make a game that personally earns you 10 to 30 million USD after taxes, you can likely devote the rest of your life to game development. You may not have enough to fund larger teams, but given reasonable budgeting, you’ve at least covered your expenses until death. For every additional teammate you need to make games, add another 10 million to your lifetime game making budget. (You may not want to actually spend your own money, but that’s a different discussion)

For those of you who find your gilded selves in that particular pickle, well done. None of the rest of this essay is meaningful to you.

Minimum Sustainability

What are the borderline cases? Imagine a glider that slowly drifts downwards, but manage to catch just enough of an updraft to never quite crash.

The following are some ideas pertinent to surviving long term in a hit driven media industry.

  1. Defining success: Success rates, Size of success, Variability
  2. Tactics for surviving the odds: Budgeting, Prototyping, Hobbies, Revenue streams

1. Defining success

Success rates

In the 90s, Sierra expected 1 out of 4 games to be a success and pay for the other products that failed to turn a profit. Recently, Mike Capps, the previous president of Epic, claimed that he couldn’t promise more than a 10% chance a game would be a success. If you made 10 games, on average, you’d expect only 1 would be considered a success.

Success rate is simply the ratio of ratio games that hit some threshold of financial success vs the total you’ve released. It is never 100% and can range from 1 to 25% based on the particular market you are in.

Over time success has been dropping. 25% is almost never seen in modern game markets. Tools are cheaper, distribution platforms are more open and there’s simply a much larger supply of games today than there have been in the past. The number of game players has increased as well, but far slower than the vast increase in developers. Given a set of equally competent games, only a fraction will become profitable.

I typically think of success rates in the context of experienced developers. These are numbers coming from professional developers that are already using every trick in the book to mitigate risks. They are making sequels, they are leveraging existing relationships, they are selling to their fan bases.

When I talk about probabilities in game development, I’m by no means saying that success is all due to luck. Instead, it is merely acknowledging that even when you do everything you possibly can there are still huge risk factors that are out of your direct control.

You might as well plan for only a small chance of success with an individual game. This isn’t being negative. Smart people make good money off probabilistic systems every day.

Size of success

How big of a success is actually a success? There are many definitions of success out there. For the purposes of this essay, let’s consider making enough money to not go bankrupt the first tier of success. At the very least that means paying for your failures.

The first thing to realize is that not all profitable games provide long term success.

If you make 10 mobile games for $100,000 a pop.

  • Brutal failures: 3 make a total of $153.02. They didn’t get featured by the app stores and were lost in the sea of obscurity. Pretty common, though people tend to be shy about discussing their failures.
  • Moderate failures: 4 make $50,000!
  • Break Even: 2 games break even. Everyone talks about them as if they were a success.
  • Success: Only a single game earns $1 million. It needs to earn 10X its cost to cover your million dollars in total dev costs.

What happens if that profitable game make $600,000? It earned 6X its costs! You made a profit of $500,000, enough to make 5 more games. However, you are still on the long road to bankruptcy, despite an apparent success. There’s only a roughly 40% chance those 5 swings at bat will result in a success. Long term, you’ll find yourself out of money or in debt.

I regularly hear press or indies trumpeting that a team broke even or doubled their money on a project and I cringe. I’m happy that they got a scratch off ticket to play again. But these are the same developers that are quitting the industry or sunk into despair when a game or two later they’ve run out of money.

It is a disservice to other developer to claim that a breakeven project is a financial success. Break even means almost nothing. You are still on the knife’s edge of baseline survival and should operate financially exactly as if you had achieved nothing.


Even studios that have successes that are 10X their average project cost still end up going under.

Flip a coin 20 times. On every 1 out of 2 times should be heads. But you don’t get a pattern of alternating heads and tails. You get streaks. You may see 10 heads in a row. This is within the bounds of chance. However, if you really needed tails to come up, you are in a lot of trouble.

Random systems have natural variability and game development does as well. The best team in the world can strike out 10 times in a row. It is just as likely for your failures to be front loaded as it is for your success. So not only do you need your success to pay for the average rate of failure. You need it to pay for the worst possible luck.

The more buffer you have, the longer bad luck streaks you can survive. At the very least, add a few expected failures into your success rate calculation. It isn’t a perfect tactic, but it helps you deal with bad luck in addition to mere average luck.

What I personally consider a successful project
At Spry Fox, in the past 5 years we’ve accumulated the following numbers:

  • 31 projects started as prototypes.
  • 20 smaller prototypes that also didn’t pan out. Some took months, others took days.
  • 11 released projects
  • 4 that didn’t make money (both brutal and moderate failures).
  • 4 break even projects
  • 3 outright successes.

For us a success means a released project makes back 5 to 10X its production cost. That is what pays for all the prototyping, failed projects and general poor dice rolls.

I was surprised to note that of our prototypes, roughly 1 in 10 end up being a successful project. I assumed we had a lot more horrible prototypes than apparently we do. For released projects, we are closer to 1 in 3 being successful.

That’s better than expected. But it does make me mildly worried that a bad luck streak is on the way. It would be completely fair to suggest that our successes were front loaded and our actual success rate is lower than the current small sample indicates.

However, the most important aspect of these numbers is that we are aware of them. They limit how much we can spend on a project and how much we could keep in reserve.

2. Tactics for surviving the odds

There are a vast number of techniques that help deal with the variability in game development. The following, however, are ones that don’t fundamentally alter the odds. They help you survive the odds, which is a very different goal.

Basic Budgeting for Sustainability
It is very common to spend too much money making your game. At minimum ask the following questions:

  • Target Revenue: How much do you expect to make?
  • Success Rate: What is chance of making that much money?

Your budget is likely Target Revenue * Success Rate. So if there’s a 10% chance of reaching $500,000, you should spend $50,000 on each project. That’s 1 full-time experienced developer for 5 months assume pay of $10,000 a month. Or if you underpay yourself relative to what you might make at comparable jobs and spend 10 months at $5,000 a month.

These numbers should look scary. They suggest that the vast majority of indie developers are ripe for financial ruin and are operating primarily on hope instead of any rational financial strategy. I think that’s accurate.

Low cost prototypes
Notice that the numbers I shared for concept success rate are quite similar to Mike Capp’s 10%. However, our released games have a much higher success rate (30+%). The reason for this is that we prove out the gameplay early using a low cost pipeline of low cost prototypes.

These prototypes cost dramatically less than a released game. Some of those 30 prototypes only took a couple days with a single programmer. By disproving bad ideas early, we put real money into games that have a much higher chance of success.

Releasing on multiple platforms
Each time you release a game on a new platform, you get to roll the dice all over again. And you do it a much lower development cost. Triple Town was only a break even game on the eInk Kindle. It was a true success on Android and iOS. If we had stopped after the first release, I would have considered Triple Town a financial failure.

Using designs and technology that quickly and cheaply transfer to new platforms reduces your porting costs and decreases the size of success you need to remain in business.

Operating as a hobby
One of the trickier aspects of sustainable development is the need to pay for food and housing. What if you can pay for those costs through some other means than games making money?

Some typical paths.

  • Contracting: You can save up money working for someone else and then spend that money on a period of full-time development. The cost here is two fold. Development goes more slowly and long term you average wage is lower.
  • Working at night: You work a full time job doing something else and then spend evenings and weekends making your game. The cost here is that work goes much slower. It is also not likely to be your best work since it is difficult to maintain quality while working more than 40 hours a week. You also bear the opportunity cost of sacrificing your leisure time to making games.
  • Supportive spouse or family: Someone else in your family makes enough money that you have the leisure to work on games full time. The costs to the artist are generally low. The dominant one is a reduction in household family income. A great situation if you can manage it.

We don’t talk about it much, but a large number of successful ‘professional’ artists are in a relationship with someone else that pays their way. They aren’t successful entrepreneurs with a deep understanding of sustainability. Instead they are full-time hobbyists in a fortunate financial situation. They accumulate excess leisure time and spend it on game development.

This sort of blessing is very difficult to admit. But embarrassed silence dupes less fortunate artists into pursuing an unrealistic fantasy of how to thrive. If you are a kept developer and are living off someone else’s money, talk about it. Indie finances could use a little sunlight.

Longer term revenue streams
Premium games tend to have spiky revenue streams focused around launches and special sales. Financial instability is built into the business model.

Here are the most common ways of adding a dash of stability.

  • Franchise: A long term game franchise where sales come from promoting sequels or remakes. This tactic is regularly practiced by conservative large companies, but also works for smaller operations like Spiderweb Software
  • Eternal updating: Continually update a game and making some noise about it. Toss in some sales. For most titles, this tends to drop off after a year or three. A consumable game tends to not be an evergreen business asset.
  • Freemium: Make a game service and build a stream of revenue. This requires that you know how to run a freemium business. It is an uncommon skill set for an indie, but quite valuable.

These give you a base layer of predictable revenue. As long as your burn rate as a company doesn’t go wildly over your income stream, you can keep making games.

These revenue streams have been our goal as a company. We are looking to build long term games that produce a steady stream of revenue from a community of dedicated players. This isn’t an easy target to hit, but at least we are building games with that conscious aim in mind.


The big lesson is that your exposure to luck is something you can manage. Think about releasing a portfolio of games, only some of which will be a success. And you should budget in such a manner that you can afford to make that portfolio. Blowing your existing capital on a single title is almost always a dumb idea. Sometimes it pays off. Most of the time, it doesn’t.

However, it is also worth realizing that playing the premium market straight on is, by many measures, a sucker’s game. The standard bet is to lose money on 5 to 10 games and have one success that lets you do it all over again. For most companies, the house always wins in the long run.

Perhaps the longer term solution is to run your games as a service. Try to create a product that produces reliable cash flows. This likely require a certain level of business thinking. You are making a financial machine that lasts instead of a Hail Mary piece of art that vanishes.

Top 5 design debates I ignored in 2014

Leave a comment
Ported Posts / Uncategorized

Back in the 80’s and 90’s, when conversation about game design was first bubbling up out of our community of insecure practitioners, a few polarizing topics would arise again and again. You’ll recognize them:

  • The correct definition of ‘game’
  • Narrative vs Mechanics
  • Randomness vs Skill
  • The importance of realism
  • Casual vs Hardcore

Many were (and are) merely the irritated observations of game players picking at specific games. However, with a flip of the rhetorical switch, players become designers expressing a universal design truth. Opinions inevitably differ and thus positions harden in the absence of data. And it snowballs from there.

Thankfully, as a developer community, we’ve grown older. With time and the accumulation of thousands published games, experienced game makers have a lot more insight into how game design actually works. It turns out there’s plenty of room for nuance.

There’s also the growing maturity to ignore false dichotomies and worn out talking points. Honestly, we don’t have time any more. We should be making great games, not arguing ancient design politics.

In the spirit of becoming a forward looking designer, here are my top 5 design debates that I’ve ignored in 2014.

#1 The correct definition of ‘Game’

I’ve seen a metric ton of definitions for game over the years and have dabbled in crafting them myself. Not a single one has been useful to me in my daily practice of making great games.

Why this discussion is outdated
Games are vast and varied. A single definition tends have one or more of the following issues:

  • Overly broad: The definition is unable to provide any direction or guidance.
  • Overly narrow: The definition eliminates useful tools and influences from other areas of systems, thought or art.
  • Overly convoluted: The definition is only useful to lawyers who care primarily about edge cases and not about getting things done.

Alternative discussions to have instead
I focus on finding and exploring useful design tools. I don’t need to care about the definition of ‘woodworking’ in order to be damned happy that hammers and nails exist. The same goes for games. I focus on scaffolding. And loot drop tables. And internal economies.

A useful goal is to find general tools that a smart designer can use to radically improve their work. Like any tool, they should to be applied in the proper context. So they are rarely universal or one-size fits all. And like a craft tool, they need to be applied with skill. They aren’t a pattern that you toss at a problem and get a fixed result.

Recommendation: Build your flexible design toolbox. Master those tools. Apply them where appropriate. Ignore pedants obsessed with defining ‘game’.

#2 Narrative vs mechanics

Science was once plagued by the idea that certain behavior derived entirely from genetics (nature) or entirely from environmental effects (nurture). This turned out to be a naive simplification of a vastly most intricate and interrelated system genetic predispositions, environmental triggers and feedback loops.

Narrative and mechanics have proven to be similarly intertwined.

Why this discussion is outdated
In the end, the human brain has neither a pure systemic understanding the world. Nor does it have a purely narrative understanding of the world. Memory, learning, emotional triggers, cause and effect all feed into how our brain adapts to environmental mechanics and then flow out again as a social response.

So the model suggested by the supposed conflict is simply broken. There is no ‘versus’.

There are many explanations for how this argument even arose. My favorite: A cocky tribe from old linear media clashed with an isolated tribe of game makers. They fought a stupid fight about authority and status that had almost nothing to do with making games. Meh.

Alternative discussions to have instead
A modern discussion could include:

  • What existing schemas are activated by my game?
  • How should we implement learning and scaffolding structures?
  • What is the impact of various forms of stimuli within game loops?
  • How should we tighten or loosen our systems of cause and effect?
  • What are systems of pacing?
  • What social role does narrative serve? How can we engineer human systems to encourage it?

Theories like Interaction Loops or Emotion Engineering integrate narrative and mechanics. In the process of banging our heads against building great interactive experiences, we’ve been forced to break down ‘narrative’ and ‘mechanics’ into atomic chunks and see how they fit in practice. Let’s discuss the rich synthesis of story, world building and mechanical techniques that thrives in interactive systems.

Recommendation: Consider how narrative emerges from existing mechanics. And consider how theme illuminates mechanics by activating existing mental schema. We need holistic, integrated models. Ignore antagonistic dichotomies.

#3 Randomness vs Skill

There’s been a sad resurgence of this 80’s wargamer rant. Randomness is obsessively derided as less masterful or strategic relative to pure skill games.

Why this discussion is outdated
Randomness is just another design tool. Used with skill, it yields some amazing games.

  • Random systems are rife with mastery. ‘Randomness’ can provide strong elements of mastery, in terms of learning distributions, managing options and adapting to new situations.
  • Games involve loops. Random outputs almost never occurs in isolation, but are part of an internal game economy. Randomness is often an essential tool for creating strategic variation and context.
  • There are different, equally valid playstyles. Not everyone is a rigidly intellectual young man who desires only mental-skill games that let them dominate others. Some play to relax, some to socialize, some for physical mastery, some to feel part of a shared purpose. Randomness can be a beneficial tool when designing for these players.

Alternate discussions

  • What games use randomness in interesting ways?
  • How does your game use randomness as skill?
  • How does randomness map onto noise?
  • What are other noise generators? Complexity noise, social noise, feedback noise, etc.
  • How do we make people better through play?

Recommendation: Practice using randomness where appropriate. Explore the space. Make a game with randomness that is about mastery. If you happen to be someone that values intellectual rigor over chance, make a game for someone other than yourself. Stretch your humanity.

#4 Realism

Past futurists sold a vision where games must inevitably become indistinguishable from reality. We marketed the hell out of that vision to the point it became dogma. You bought a new console, a new video card, a new computer to creep ever closer to the dream. You argued for 1080p as a paladin fighting for the glorious Holodeckian cause.

Why this discussion is outdated
Realism in graphics or simulations no longer is a dominant goal for most game developers. In practice, it turned out it wasn’t really an essential feature for a successful games. In our far future era, you can snub realism and still make a billion dollars with a game like Minecraft or Puzzle & Dragons.

  • Realism has niche appeal. It is an aesthetic choice that tends to appeal to a singular sub-culture that we’ve trained with our decades of marketing. Cartoons, text and other stylized forms of representation are also appealing.
  • Realism can be an unnecessary expense. We sometimes wholesale replicate reality when we don’t know what specific stimuli actually appeals to players. It is sort of a shotgun approach that wastes vast amount of effort to hopefully make something interesting. A substantial portion of the exponential escalating cost of game development can be attributed directly to the pursuit of realism.
  • Simulation adds design risk: Many simulations are complex and difficult to manipulate. They also are not inherently emotionally satisfying. Insisting on mechanical realism while simultaneously trying to make a fun game tends to yield failed game designs.
  • Games are also endogenous systems of value. They are like little self contained baubles of math that set up interesting internal relationships. A game like Tetris has immensely value independent of references to the real world.
  • When players ask for realism, they often aren’t asking for realism. The desire for realism is often best understood in terms of how players learn and apply existing mental schema to new system. A request for realism could be: A new player asking for a metaphor that helps them understand an abstract system. Or it could be an advanced player pointing out unnecessary edge cases. Both these have solutions outside belabored realism.

Alternative discussions to have instead

  • What is the right art style for your audience?
  • What are the trade offs between art style, production concerns and budget?
  • What sort of math or systems are interesting independent of their appearance in the real world?
  • How do we make game-like, cartoon-like, info rich, surreal virtual reality games?

Recommendation: Ask what utilitarian feedback your game truly needs. Invest your art resources making those elements amazing. Ask what level of modeling a system needs to create rich gameplay. Invest your design resources to create a tiny rule set with deep emergence. Be smart. Be frugal. When someone demands realism, try to figure out what they really want.

#5 Casual vs Hardcore

There’s a set of cultural stereotypes that casual players act one way while hardcore players act another. A surprising number of design decisions are made based off these stereotypes.

Why this discussion is outdated
The casual and hardcore stereotypes suffer from the problems typical of stereotypes. They are gross simplifications that yield the incorrect design decisions.

  • Many of the stereotypes are simply wrong: The longest average playtimes? Not console or PC. Handheld games, particularly those ‘kiddy’ Nintendo titles dominate session length. Regular daily play happens more often on smartphones and tablets than it does on consoles. When I look at data, there are very few ‘casual’ or ‘hardcore’ stereotypes that hold true. And when they do there are massive exceptions. 
  • The variation within a specific game is huge: You’ve got a half dozen or more distinct playstyles within almost any game of reasonable complexity. Each game is a vast city with many different people living within it. Mere averages tell you very little about how to improve the state of your game.
  • The market is shifting: Service-based games are driving for improved retention by doubling down on play. Women are playing more. Console owners are aging and slowing down. A lot of the old lessons about demographics and play styles have shifted. And they’ll continue to change in the future.

I see ‘casual’ or ‘hardcore’ as poisoned tribal labels like ‘gamer’ or ‘skinner box’. Mostly they are just weaponized stereotypes, deployed to enforce perceived group boundaries. They have little productive place in a modern design (or marketing) discussion.

Alternative discussions to have instead

  • How do you break out of thinking in cheap stereotypes in order to gain an advantage over the dinosaurs that don’t see the market has it truly exists?
  • How do different groups unique to your game behave? (Hint: We can get the data!)
  • What motivates the groups unique to your game?
  • How do you include diverse hooks to appeal to multiple passionate audiences?
  • How do you make a targeted niche game using iteration with a live community?
I personally tend to make games that look ‘casual’, but consistently melt the brains of self identified ‘hardcore’ players trained on endless tutorials, cut scenes and QTEs. Some of the best players are smart 30-40-year old women that have the intense mental stamina for activities like logic, planning and creative thinking. They thrive on hard games. My market doesn’t even exist if you see the world through a ‘casual / hardcore’ lens. Yet there it is, merrily enjoying games amidst the vast diversity of this planet’s billion odd players. 

No one really makes ‘hardcore’ or ‘casual’ games. At best, we use existing markets, tribes and distribution channels to get a tentative foothold in a player’s psyche. But then it gets complicated. Embrace the complexity of your players. Learn who they actually are. Create elegant solutions that serve your many types of players.

Thoughts for 2015

If you happen to find yourself facing these 5 topics: Turn away. Our creative lives are limited. Pour your time into something productive.

  • Teachers that spread these memes: Consider teaching modern game design tools. Cull disproved dogma. 
  • Academics that expound on these ideas: Stop naive theory crafting and start referencing nuanced data from working designers.
  • Students that gnaw at these bones: Arguing ancient talking points in comment sections gets you nowhere in life. Make games instead. Base your design conversations around your hands-on experiments. You’ll learn more, faster. 

Goodness knows that conversations on dead design ideas will not end. Players and their innumerable derivatives (fan press, forum warriors, cultural critics, etc) continue talking about these topics. Some talk for entertainment. Some for status. Some for business. Some talk about their game experiences in order to process them mentally and emotionally. For many of these purposes, simplistic polarizing hooks are more enticing than deep comprehension.

So these inane design views become practically tradition, or at least common hazing rituals. Like yelling at televised football games. Or laughing at trucknuts. Sure, players aren’t having a productive craft conversation, but they shouldn’t be judged by the same rubric. Consider their chatter a cultural performance.

As for designers, you have a different role to fill. Recognize when you are accidentally acting like a uninformed player or student. Instead of getting caught up in the babble of ill-informed internet backwash, try talking directly with other working designers. Build tools and knowledge together.

Here’s to a more productive 2015,

Loot Drop Tables

comments 2
Ported Posts / Uncategorized

Many games have loot. Usually this drops randomly. Loot drops are a pretty mundane topic, but one that almost every designer runs into at some point. Here are some best practices I’ve encountered over the years. Many thanks to everyone who contributed to these tips and tricks.

Your basic loot table

The goal is to drop some set of items at a given probability. Let’s say when you defeat an enemy, you have a chance of getting shield, a rare sword or nothing at all.

    name: sword
    weight: 10
    name: shield
    weight: 40
    name: null
    weight: 50


  • Item: An item is something you want give the player.
  • Loot Table: A set of items is put into a loot table. This is just a bucket of items. For example a loot table might include: Sword, Shield, Null.
  • Weight: An item has a drop weight: 1 to 10,000. For example a sword might have a drop rate of 10.
  • Null items: One of the items in the loot bucket is ‘null’ which means if that is rolled, no loot is given

Rolling for loot

  • Total probability: First, sum all the weights in the bucket. In the example above, that’s 10+40+50 = 100. They don’t need to add up to 100 since these aren’t percentages.
  • Next assign each item a range. Sword = 1-10, Shield = 11 to 50, Null = 51 to 100
  • Generate a random number from 1 to 100.
  • Compare that number to the ranges. That’s the item that drops.
  • Reroll: Generate multiple random numbers to simulate multiple rolls.

So what does this look like to the player? We’ve got a 10% chance of dropping a sword, a 40% chance of dropping a shield and a 50% chance of getting nothing.

As the designer, I could go in and change Null’s weight to 100 and now I’ve got a 6.6% (10/150) chance of dropping a sword, a 26% (40/150) chance off dropping a shield and a 66% (100/150) chance of dropping nothing.

Mapping onto other common random systems

This system is a simple restating of many other familiar methods of randomness. It is a fun superpower to train your designer brain to be able to switch between understanding any randomness issue in terms of loot tables, cards or dice.

Imagine deck of cards that you can shuffle and draw from.

  • Each type of card in the deck is an item.
  • The number of cards of a given type is that item’s weight
  • Shuffling the deck is equivalent to assigning each item to a range and generating a random number.
  • Drawing a card is the equivalent of selecting the item that drops.

Now a normal deck of cards has 52 cards, but with loot tables, you don’t need to operate with that constraint. Your decks could have 1000’s of cards and a vast array of types. Or they could have tiny decks that are the equivalent of a typical poker hand.

Dice also map onto loot tables.

  • Each individual die is a loot table.
  • The sides (1-N) are items (labeled 1 through N)
  • Each side gets a weight of ‘1’. (Unless you are using weighted dice!)
  • Multiple dice can be represented as rolling the same loot table multiple times. So 2D6 is the equivalent of sampling a 6 item loot table twice.


Now that we’ve defined a basic loot table, what else can we do with it?

Variation: Items sets
You can also drops sets of loot. An item doesn’t need to be a single thing. For example, I could extend it so that the players gets a shield and a health potion if that option is selected.

    name: sword
    weight: 10
    name: shield
    name: healthPotion number: 2
    weight: 40
    name: null
    weight: 50

Variation: Always drop
A common need is to flag an item so it always drops. One convention is that items with weight ‘-1’ always drop.

Variation: Repeatable randomness
Sometimes you want to be able to repeat a random roll. For example, when a player saves a game and then is able to reload to avoid a bad loot drop, it can lead to very grindy player behavior. If there is an exploit that ruins the game for them, most will happily go for it.

Most contemporary pseudo random number generators use a seed value. As long as you can save that seed value, you can run the random number generator again and get the same result.

Variation: Rolling without replacement
The problem with the system above is that players may, through chance alone, always roll ‘null’. This is a common complaint by players. “I played that encounter 3000 times and never got the MegaGoldenLootGun!” This can happen.

In statistics, there are two fundamental types of sampling:

  • Sampling with replacement: You pull the numbers out of the bucket and then after you’ve recorded what you got, you put them back in. So you have the same chance of getting the same thing again in the next draw.
  • Sampling without replacement: You pull the item out of the bucket and once you’ve recorded it, you set it aside. You have a lower chance of getting that item again and thus a higher chance of getting the remaining items.

Tetris uses sampling without replacement. Each set of Tetris pieces is in a loot table. Every time you get a specific piece, it is removed from the bucket. That way they guarantee that you’ll always get a long piece if you wait long enough.

Here’s how you implement rolling without replacement in a loot table.

  • When you roll an item, reduce its weight by 1. This shorten its range by 1 and shortens the max range by 1 as well.
  • Keep the player’s modified loot table around for the next time you roll.

Variation: Guaranteeing specific drops
Sometimes even rolling without replacement isn’t fast enough and you want to guarantee a loot drop. Blizzard does this for certain rare drops so that players don’t grind for very long times.

You could just increase the weight, but a low chance of getting something with a guarantee can feel very different over multiple plays than a slowly increasing chance of getting an item.

Here’s how you implement guaranteed loot drops.

  • When you roll any non-guaranteed item, reduce all non-guaranteed items weight by X%
  • X = 100 / Max number of rolls you before the guaranteed items drop.
  • Keep the player’s modified loot table around for the next time you roll.


  • Suppose you want the sword to always drop after 5 turns even though it it only has a 10% chance of dropping.
  • So X = 100 / 5 or 20%.
  • So every time you don’t roll the Sword, the weight for the Shield drops 8 (40*0.2) and the weight for null drops 10 (50*0.2)
  • After 5 turns, the weight for all the other items will be 0 and the sword will have a 100% chance of dropping.

Variation: Hierarchical loot tables
Loot tables are generally source for new resources. However, you can easily run into situations where you are dropping too much or too little of a particular resource. Some sort of constraints would be helpful.

One solution is to use hierarchical loot tables without replacement. When a particular resource runs out, the player doesn’t get any more. We’ve used this for our daily coin awards. We want to give out 100 coins a day, but no more. But we want to do it as part of the loot system.

  • Create two tables: Rewards and DailyCoins.
  • Have the main loot table reference the Daily Coins bucket.
  • When Daily Coins get picked, roll that table and see how many coins you get.

lootTable: Rewards
    name: sword
    weight: 10
    name: dailyCoins
    weight: 40
    name: null
    weight: 50

lootTable: dailyCoins
  type: noReplacement
  refreshRate: Daily
    name: coin, number: 1
    weight: 10
    name: coin, number 10
    weight: 4
    name: coin, number: 50
    weight: 1

In the example above, a player has a 40% chance of getting coins. Then we roll the dailyCoins table and see that they can win a maximum of 100 coins a day with 10 awards of 1 coins, 4 awards of 10 coins and 1 award of 50 coins.

When the dailyCoins loot table is emptied, they’ll get nothing until it refreshes after a day.

Variation: Conditional drops
Sometimes you want to test if you should drop the items base off some external variable. In Realm of the Mad God, we wanted to avoid free riders getting loot for a boss kill without doing at least some damage. So in the loot table, we added a check. If a valuable item in the loot table was rolled, then we’d check to see if the player had done more than X% of damage to the enemy.

You could also build in switches for which loot it valid based off player level or even enemy level. I tend to instead use multiple smaller loot tables, but the system is flexible enough that you can easily architect your data with a few large tables and use of conditionals.

Variation: Modifiers
You can also modify the quantity or weight of a drop based off some external logic. For example, a player with a skill in harvesting could yield 2x as many of a particular item drop compared to a player without that skill. Or you could modify the weight. A high level character might have a -50% weight for all items marked lower than their level. (Thanks to a Reddit commenter for this idea)

Other uses

Drop tables are commonly used for dropping loot. But I also find them useful in other areas.

  • Procedural generation: Use a table to build weapons or characters from components
  • AI: Use a table to select behaviors such as attacks or moves.

This may seem a little silly..surely there are better ways to model AI! However, one way to think about randomness is that it is a very rough first order model of any system. How does the human brain model a system? We make an observation about a system. We note the frequencies and tendencies for those observations to reoccur. It is only much, much later that we start to understand ‘why’ something happens or the causal relationship between parts.

In physics, we often joke that in order to model a cow, a complex biological organism, the first step is to ‘imagine a spherical cow’. By creating a simplistic, easy to work with model, we can often generate useful insights at a very low cost.

Many times, a drop table is a ‘good enough’ human-centric approximation of a complex system. For many systems, most players will never move beyond a basic probabilistic understanding so modeling more complexity is a waste of time. Efficient game design is an exercise in modeling elements only to the minimum level necessary to create the desired experience.

Consider: D&D modeled entire universes with what were essentially loot drop tables. That was a deliberate focus on minimizing systems that were in many ways just secondary flavoring to the core roleplaying.

A loot drop table isn’t the only tool you need, but in many scenarios, it is good enough.

Procedural generation thought experiment

Here’s a simple procedural generation system using drop tables. There are lots of other ways to do this, but this is more to get your brain thinking.

Let’s say you want to build a procedurally generated enemy

  • Start by making a list of unique enemy parts. Maybe your enemy is made up of a type of movement, a type of attack, a defensive buff and a type of treasure.
  • Make loot tables for each one of those parts.
  • For each item in the loot table, give it a power value based off how powerful you think it might be. for example, a knife attack might be weak so it only has a power of 5. But a large hammer attack might have a power of 15.
  • Create another loot table of buffs. These are modifiers to various attributes. For example, ‘Strong’ boost a value on an attack by 20%. You can have debuffs as well ‘Weak’ might diminish a value by -50%. These have reduce the power value of a part.

Now let’s generate an enemy

  • Set a target: Set a target power for your generated enemy. Say you want an enemy of power 40
  • Roll: Roll each of the parts once and add them into a list.
  • Score: Add up all the power values to get a score.
  • Adjust: If the sum of the parts is over the target, add a debuff or roll for a lower power part. If it is under, add a buff or roll for a higher power part.
  • Repeat: Repeat this process until you hit a desired error threshold (distance from power 40) or you’ve exhausted the number of iterations you are willing to spend.

You now have a procedurally generated enemy. There are tons of tweaks you can do to this basic system, but it works most of the time. As an exercise, think about:

  • Exclusion lists: If two parts are picked that are on the list, throw the enemy away and reroll.
  • Multiple constraints: Parts are scored on multiple criteria. Note, the more constraints you add, the less likely you are to converge on a viable result.


Any time there’s a discussion of randomness, there’s a huge number of secondary issues that come into play. I recommend the following for further reading:

Resist being dogmatic about randomness. Be a broadly educated designer whose aesthetic choices are based on hands on experimentation. A good rule of thumb is that you can’t intelligently critique a design tool until you’ve made a couple games that use it successfully.

Anyway, this is just how I’ve done loot tables; a mundane part of any working designer’s life. I’m curious if other folks have other ways of managing loot (and randomness) that they love and live by.

(And before I forget – I’ve recently freed up some time to do some games consulting. Ping me if you need help with your games!)

take care,

How game forms are shaped by their environment

Leave a comment
Ported Posts / Uncategorized

We often consider artistic works from a creative or cultural perspective, but I find it just as enlightening to examine them from an economic or evolutionary lens. How does the economic environment within which a developer finds themselves shape the form that art takes?

As a case study of this in practice, I’ve been fascinated by a class of content-focused game that’s recently found a stable niche in the maturing mobile, PC and console markets. In mobile, we see examples like Sword & Sworcery, Device 6 or Monument Valley. In PC, you’ve got Kentucky Route Zero, Proteus and Gone Home. On console the trend is less pronounced, though Journey and Flower share some aspects.

These games generally have the following characteristics

  • Strong focus on evocative content: Most of the game is composed of arcs that deliver heavily authored payloads. The player’s cognitive load is consumed by interpretation of stimuli not the planning or execution of actions.
  • Light use of systems: Mechanically, the games tend to have limited interactive loops. There is little room for play within a mechanical space. The systems used are often highly traditional with a long history within other genres.
  • Short playtime: Often 1-3 hours.

This form thrives not due to some sudden explosion of artistic appreciation within the human race, nor due to universally-applicable intrinsic attributes of Truth and Beauty. No, instead these games thrive because they competently execute a development strategy that matches well with the current socioeconomic environment.

Form shaped by environment risk

Form is an accepted and standardized structure for a work of art. A painting stretched on canvas painted in oils that fits roughly on a living room wall is a common form of painting. A haiku is a form of writing.

Unlike many media, the forms that a game might take are still quite fluid. Where authors of literature might feel locked into to well-established structures such as poem, short story, essay or novel, game forms are both broader and have less sharp boundaries. They vary radically in mechanics, scope, topic, number of participants, and hardware. The difference between a game of Tetris and a game of Charades can seem far vaster than that of a Shakespearean play and an encyclopedia entry. And as a designer, you often get to chose the unique form of your game.

How risks shape game forms

However, different forms of game have different levels of risk and trade offs. There’s internal risk such as design risk, technical risk, production risk. And then there’s external risk such as distribution risk, market fit and many others. If any one of these aspect of the project fails, the development investment is lost. Any game design can be judged by the costs associated with building the game, the benefits of success and the downsides to failure.

Fig 1. Valid terrain based off existing environmental risks

These are not abstract decisions. Most developers (even large ones) operate a paycheck or two away from bankruptcy. Paying the rent and putting food on the table are very real concerns. Many smart teams therefore choose projects of a form that minimize overall risk in order to dramatically increase their chances of future survival.

Thus game developers have a great incentive to evolve game forms to fit whatever environmental pressures are present. If something changes in the environment that increases a type of risk, then you’ll see developers selecting, from this vast palette of potential forms, the options that mitigate that risk. Picture a thousand little Brownian developers blindly adapting their game forms to half felt market forces and thus converging on useful strategies.

Using survivors to determine dominant strategies

The process of evolving games forms can feel invisible. The vast majority of projects that don’t balance their risks correctly, fail and sink out of the cultural consciousness. Most creators are barely conscious of their influences and constraints. All we really know are the the survivors.

When you see a new species of game thriving in the marketplace, you can start to ask some interesting questions. What are the culling mechanisms that let those games survive? What strategy was used that gave them an advantage over other possible designs? The things that make it through the filter give you some insight into the shape of the filter.

Some forces at play

What are some meaningful forces acting upon the modern indie developer attempt to sell a game for a fixed upfront price?

  • Digital distribution and cheap tools: At the heart of the emergence is ability for small teams to build and release games at low cost. However, those markets are now maturing.
  • A large audience trained on content consumption: The past decade of AAA titles perfected a variety of secondary content delivery standards via cutscenes, level design, voiceovers, etc. Gamers know and understand these methods. Over the decades, we’ve built up the equivalent of a trained audience that knows how to read.
  • Average revenue for a product is dropping. In fact they are close to zero in mobile markets. The exponential distribution of revenue looks more L-shaped, with small number of titles making the majority of the money and no middle market to speak of. You have hits or failures with little in-between.
  • Price per unit for games with an upfront cost is less than $0.99. As Steam opens up further, bundles proliferate and consoles introduce more free games, expect further price erosion for premium titles. You need to reach more people to make less money.
  • Discoverability is weak. Discovery mechanisms are weak and heavily gated. Channels are also flooded with games of difficult to determine quality. A game benefits from being able signal quality 1 to 30 seconds of exposure since that is likely all the time it will get.
  • Cost of production is increasing: Cheap tools bring the capital cost down, but labor costs remain stable. The need to hit ever increasing levels of quality results in an escalating cost curve. Five years ago, a hit premium game on mobile might cost $50,000 to build (including sweat equity). Now, for less revenue, you’ll see costs range from $200k – 1M (or higher). This expense is almost entirely due to content and feature competition: more art, more animation, increased use of 3D, more ‘required’ features.

So it is hard to stand out, hard to make money and very easy to spend more than you make.

A content-focused strategy

Given such a landscape, what is a species of game that might survive? We are looking for solutions to the problems listed, but also ways of tackling multiple problems with the same resources. Efficient solutions survive.

Fig 2. A strategy that mitigates technical and design risk.
While taking on some distribution risk.

Note that the following is by no means the only strategy. If you look around at other thriving developers, there are many alternatives. Nor is it a preferred one. This strategy has no inherent value beyond its functional benefits. Nor for that matter is it likely that the half-blind creators explicitly planned out their strategy. Like the flying fish and the (sadly extinct) flying shark, common strategies converge unwittingly from disparate perspectives as if shaped by an invisible hand.  Environments have local maxima whether or not we are smart enough to perceive them ahead of time.

With those disclaimers duly dispensed, consider a content-focused development strategy for small teams…

Reduce costs

  • Target a smaller scope: Content is expensive, but what if you make a game that is 1 to 3 hours, not 20 or 30? This simple change means you can cost 1/10th what a bigger title might. This is the defining economic attribute of this game form.
  • Remove systems and features: Trim as many standard elements as possible and focus the game focus on one or two key features. Dear Esther, you walk around. In Gone Home, you walk around and click on objects. NPCs? Cut. Combat? Cut. Branching narratives? Cut.
  • Keep your team small. Since labor is your largest cost, a small team means lower investment. Team members should being able to execute multiple aspects of development so you don’t need part time specialists.
  • Keep your development cycle short(er): Spend 9-12 months on a title, not 18-24 months.
  • Excel at what you attempt: It helps to have at least one or more people who are world class. Then build your game around their signature style. This makes up for some of the inevitable weaknesses that arise from small teams sizes, wearing too many hats and short schedules.

Reduce distribution risk

  • Make high impact video and images. Since you have limited contact with potential players, you want the briefest glimpse of a game to excite them. Gorgeous visuals, evocative narrative hooks that can be grasped in a couple seconds work well. All many buyers need to see of Monument Valley is a single screenshot.
  • Form relationships to amplify your signal for free: With a small team and a low marketing budget, free distribution is ideal. By forming relationships with journalists, streamers, taste makers and platform curators, you may get a mention or a feature. Of course, what you provide in return is a sellable story or validation of their long simmering world view. ‘Games as art’ is currently easy topic to bond over and all games with this form make the most of it. 

Reduce design and production risk

  • Rely heavily on static content: Art and video rarely fails on a functional level. There’s a risk in discovering an artist initially, but once on board, a competent artist tends to continue to produce competent art. Especially over short production schedules. You already need to make high impact visuals in order to get distribution, so there’s synergy here.
  • Use existing mechanics: New mechanics take time to discover and often don’t work out. Invention is hard. By using well proven traditional mechanics, it is unlikely that the systems will delay your game. Turning a page or clicking a hyper-link is quite reliable.
  • Reduce systemic emergence: Unplanned surprises hurt the schedule and cost you money.

Reduce technical risk

  • Use existing technology: Well proven, simplistic technology. Again, you can get away something that simply puts quality content on the screen
  • Avoid complex technologies: Technology that require strong expertise such as multiplayer servers or advanced 3D rendering is likely to blow up. So don’t do that.

Reduce audience risk

  • Make the game easy to finish: You want people to play the game, finish it and then talk to their friends while still in midst of the afterglow. This is a fast virus, not a slow one. Challenge is a useful tactic in other contexts (Dark Souls, Spelunky), but it is a poor fit when you want to deliver your beautiful load of content as smoothly as possible.
  • Keep content highly interpretable: To offset the risk of the game being too short, you can implement content that either vague or open to many interpretations. This means that quality of your content can be lower without anyone being able to concretely describe it as such. A certain air of mysterious brilliance can act as a prophylactic against common criticisms; seed the doubt that a player may simply be unschooled in Imperial fashion.
  • Engage the community: Ideally, you kick off a secondary wave of community engagement as players and critics invent their own detailed explanations for what may in fact be random (yet highly evocative) noise.

Notice how all these pieces fit together into a coherent strategy. A small team with a strong artist and / or writer makes a short, attractive game that sells a light narrative. This also happens to be small enough a scope that they can finish and release it. Such a game is pretty enough to be featured and can be easily talked about. There’s also little risk for the player…they get this nice watchable nugget of content that’s super cheap and feels like a reasonable value relative to other comparable consumables like books or movies.

A deeply conservative take on games

This strategy formula isn’t new in the grand scheme. Cheap, consumable content differentiated on gatekeeper-approved quality variables is at the heart of most media markets.

In grand spectrum of possible games, the crop of boutique content games is one of the most conservative possible development strategies. Rosy cheeked media critics who might imagine the real history of games started in 2007 are likely excited by such titles. However, when compared to the rich systemic and narrative experimentation of the last 30 years, these forms are ultimately a retreat; survivalist risk mitigation marketed as hip cultural advancement. Such games tacitly give up on the idea that games could be a different type of thing than traditional media and adopt whole hog similar methods and limitations. At the crudest level, you flip pages, you see content.

One should tread lightly in labeling this as a ‘bad’ change. Evolution does not judge. This strategy works. Good, passionate people are making money and surviving to build another game. That’s all you can really hope for as a game developer in a staunchly capitalist world.

The future

Since we are dealing with a conservative product strategy, comparable markets suggest where these might evolve over the next 5 years.

Fig 3. Increasing costs put new pressure on the content heavy form.
Player desire for the new form increases the overall market opportunity.
  • Rapid market saturation: Since costs of entry in terms of skills and technology are quite low and first movers have almost zero competitive moats, new entrants should flood the market. This reduces the average success rate; most will not be profitable.
  • Costs increase: As more entries appear, quality becomes more important. Those with cash spend more to keep or capture profitable audiences. Form-specific blockbusters emerge that spend the maximum amount to get the maximum audience. (I’ve called these genre kings in the past).
  • Shorter length: Increased costs put pressure on decreasing the length even further. At some point players may decide that even an amazing 20 minutes is not worth 99 cents.
  • Use of portfolios: Anthologies, bundles or subscriptions to content streams (aka magazines) are common methods of paying a population of authors in a hit driven ecosystem. If this shift in market structure occurs, middlemen begin dictating tastes even more strongly.
  • Attempted differentiation based off thematic genre: Essentially the market fragments. As customers become trained in this new form, they’ll start to prefer specific types of content, much like we we see romance or mystery novels. First movers in thematic areas could tap a new sub-niche.
  • Fragile specialist firms: Developers will need to specialize in this specific form to produce the best of breed content. However, this makes them inflexible when the need arises to adapt to new forms. We’ve seen this situation play out in the past with adventure games.

It may seem silly to predict a future of saturation and collapse when there are so few of these games around. Yet markets are never eternal. Due to the lack of competitive moats, this one will mature rapidly and any golden period is likely to be short.

Fig 5. Fragmentation into sub-forms due the changing landscape

In some sense, these short content focused games have made a deal with the devil. They’ve reduced their inventive mechanical scope and deliver all their value through highly polished content. However, one constant of the game industry is that content costs are always rising on a given platform. The cost curve is the monster that eats our industry. It is great to trim 1/10th of the content in a game to get your costs down, but what happens when the cost of making content then jumps by 10X? That brief advantage disappears.


Though I don’t personally make short content-driven games, I find this lens immensely useful in understanding how and why my work impacts the world. All art is shaped by the economics of a specific time and place. All standardized forms of art are but niches within a socioeconomic ecosystem. They are not eternal, they shift over time. Knowing that common forms are not some absolute truth empowers the clever and observant developer.

It pays to ask: Who is making money? How do the developers, journalists, museums, critics or other middlemen benefit from promoting the works that they promote? Any creative work that depends on money-making institutions (big or small) is a commercial artifact, shaped by commercial constraints. None of us are truly independent creative entities. That’s at best a pleasant illusion, a lie. We all create within systems that cull our impassioned work with pragmatic brutality. We also, like it or not, preempt this culling through self-censorship.

The flip side of this analysis is to look at the failures.  Ask who is doing something different and failing? What structural and environmental factors explain why they are not making enough to eat? Once you’ve identified the problem areas, is it possible to spot gaps and come up with a new strategy that lets you thrive?

When you see a new form of game emerging, ask why. Seek to understand the confluence of forces. Then use this rich understanding to invent your own unique form of game. Do your part to ensure that the evolution of games never stagnates.

take care,

Multiplayer Logistics

comment 1
Ported Posts / Uncategorized

How do we get players to play together in a manner that fits their schedules? This is a key logistical challenge a designer faces when building multiplayer games.

The promise
We are seeing a blossoming of innovative multiplayer systems. In previous eras there were a handful of default models that games might use (matches, play-by-mail). Games today exist on a spectrum from fully concurrent to fully asynchronous and everything in between. A game like Dark Souls is predominantly single player, but includes interactions that are asynchronous (the leaving of messages and deaths) or fully concurrent (the joining of another player into your game for PvP or Coop.)

We are entering a golden era of multiplayer gameplay. Server costs are falling dramatically with the advent of cloud computing. Broadband internet and always on mobile connections are spreading rapidly across the globe. Business models like in game payments, crowd funding and service-based gaming are evolving to the point to financially support a broad range of long-lived communities. Designers are playing with these new capabilities to invent new forms of multiplayer gaming.

The challenge
However, multiplayer is both expensive to build and has a high risk of failure. Often teams invest 50 to 100% of their development budget into creating a multiplayer mode. It seems worth it. During development, the team plays every Friday and has so much fun they are convinced that multiplayer is what will turn their game into the next League of Legends or Counter Strike.

The real test occurs when the game faces a live population of players. Upon launch, multiplayer games often see only a few weeks of active multiplayer activity. Too many people show up. Then not enough. Players visit sporadically and the player experience is deemed unreliable. The active matches trickle down to nothing. The traditional matchmaking lobbies (a design from the 1990’s) are left empty and will never be full ever again. The multiplayer portion of the game dies a sad sputtering death.

I see this as a challenge of logistics. There were players who wanted to play. However the way that the game put those players together results in weak community that was unable to self sustain.

Are there atomic elements of multiplayer logistics that lets us approach the topic of inventing new systems in a more rigorous fashion? Simply copying multiplayer patterns from previous eras works poorly. To invent new multiplayer modes, we must have conceptual tools that let us clearly and concisely manipulate topics like logistics, concurrency and interaction schedules.

Concepts when talking about multiplayer

Here are some concepts I think about when designing a multiplayer game.


You can break up any multiplayer system into a series of interactions. An interaction is anytime players interact with one another via a game system (be it chat, hitting one another, etc.) These are the multiplayer verbs of your game. Usually a game has a set of single player verbs (move, quit, etc) and another set of multiplayer interactions mixed in. Interactions have a wide range of multiplayer properties such as frequency, scope, mode, etc.

If you map an interaction onto time, it looks something like this

  • The player starts the interaction
  • They end the interaction
  • They wait for a response.
  • If no response is forthcoming, they leave.

Interactions aren’t a new thing. The structure is identical to that found in atomic game loops. However, instead of a single loop you have something closer to a figure 8 with at least two participants. These concepts go back to communication theory that Chris Crawford adapted to games design theory in the 1980’s. This is fundamental stuff that all professional game designers should know.

Initial loop:

  • Model A: Player formulates an action and a target player or group.
  • Action A: Player performs the action.
  • Rules: The results of the action are mediated by the game logic.
  • Response A: Player A sees the immediate results as generated by the game.
  • Response B: Player B sees the immediate results as generated by the game. Note that what Player B sees is likely different than what occurs for player A. This naturally leads to divergent mental models and enables gameplay concepts such as hidden information or Yomi.

Reciprocating loop

  • Model, Action, Rules, Response B: The target players tries to understand what happened and formulates a response.
  • From here the loop ping pongs back and forth between participants.

Frequency of interaction

What is the frequency of interaction necessary to yield the impression of concurrency? You may find that you need to interact once every 5 minutes in a strategic game like Civilization while you need to interact every 200 ms to create the same impression in a twitch-based action game like Counter-Strike. See the article “Loops and Arcs” for a more detailed explanation.

In general, the higher the frequency of interactions, the more information being communicated between players. This can increase the pace of relationship formation.

As with many interaction variables, there are distinct phase changes in the players perception as the frequency hits a threshold. Simply by changing the spacing between interactions, we get radically different forms of play (and associated logistical challenges):

  • Real time: Players perceive interactions as ‘real-time’ when the frequency reaches the point where: A player starts and ends an interaction and then sees a response before they move onto other tasks; interactions overlap. Chat, for example, can feel real-time despite there often being more than a minute between responses. Real-time systems have less need for persistence but are often more expensive to run and build.
  • Asynchronous interactions: The frequency at which a player can start an interaction and end the interaction and then quit the game without seeing a response is seen as asynchronous. Generally you build in some sort of persistence so that a player that logs in later can see the results of the interaction and formulate a response.

Types of interaction
There are a variety of interaction types. Think of these as ‘how’ players interact. For a much more in depth description of all the various multiplayer interactions, see Raph Koster’s seminal talk on social game mechanics.

  • Spacial avatar interaction: Two or more avatars interact with one another. Shooting players in Quake is the classic example. Following a player in Journey is another.
  • Spacial environment interaction: Players also interact through the intermediate environment. In Minecraft, players build castles that other players then explore. For a higher frequency example, in Bomberman, players place bombs that open up passages or do damage to others.
  • Decoration and Display: Players signal status, affiliations and history via what they wear or how they decorate their weapons, pets and houses.
  • Economic: Players give, trade or pay for various resources to transform or transfer to another player. This can be a typical sale of a sword to another player for gold. Or it can paying mana for a buff that boost the health of a nearby player. See Joris Dormans work on internal economies for more on this topic.
  • Text: The most common method of introducing language into an online game is through text. It tends to be low cost and there’s a rich set of tools (spam filters, stylistic conventions) for dealing with common issues. It tends to work best with a keyboard.
  • Voice: Voice offers additional nuance including emotions, age, gender and more. It has limits for group size, bandwidth and is notoriously weak when it comes to filtering.
  • Body language: In local spaces like on a couch or around a table, we pick up on high bandwidth communication such as facial expression, posture, body height and physical presence. When a tall pretty boy looks you in the eye and asks that you trade your rare treasure with him, you may be getting signals that go far beyond what is found in other types of interaction. This creates rich emergent multiplayer gameplay. However, it is also hard to mediate and incorporate explicitly into the game systems.

Size of community
There are also massive phase changes that occur as you increase the number of participants in a community.

  • 1 player: Mastery, progression, exploration, narrative are available as design tools.
  • 2 players: Communication, relationships, status, gifting, trade, cooperation and competition become available.
  • 3-4 players: Alliances, politics, gossip, othering/stereotyping become available.
  • Small group (5+): Group vs group interactions, Official leadership, role specialization, official punishment
  • Medium group (12+): Factions, barter economies, and banishment
  • Large groups (40+): Hierarchy (leaders and sub-leaders), Currency-based economies, role enforcement. Adhoc systems of government, public codification of social norms.
  • Very Large groups (200+): Merchant classes, market-based pricing, codified systems of government, underclasses, celebrity, propaganda. This is the point at which a players is guaranteed not to know everyone and official systems are required to make social norms work. (see Dunbar’s Number)
  • Massive groups (1,000+): Polling, city-scale production efforts. There are very few dynamics that happen at this scale that aren’t also explore with 200+ or even 40+ groups.

I’m defining these groups in the context of player interactions.  The actual game population may be much larger.  For example with trade in Realm of the Mad God, we saw simple trade interactions happen with as little as two people even in populations that are in the thousands.  Two good rules of thumb when considering group size is to ask:

  • Who does this action impact or target?  This gives a rough estimate of the group size your system needs to support.
  • Is a larger group size necessary for this behavior to emerge?  If not, you can usually get by by targeting your design at multiple instances of a smaller group size.

The actual transition points fluctuate around these numbers based off contextual factors. For example, the transition to the dynamics of a Very Large Group can occur as soon as 60 or 70 people if there are weak communication channels that stress a player’s ability to maintain relationships.

Also, large groups are inevitably composed of smaller groups. So as systems are added, the dynamics of lower number groups are still present.

The dangers of large group sizes: It can be tempting to make epic multiplayer games with thousands of interacting players that could theoretically all fit in the same room. However, the technology and design costs are high and the benefits weak. Past 150-250 players, your game is in territory beyond Dunbar’s theorized biological limit on maintaining meaningful relationships.  All those extra people end up just being treated as number or abstractions by your players. A simple sim or polling system can often capture the major benefits of the next highest group size. 

Realm of the Mad God was completely playable as an MMO with action sequences of 40-80 players and trade / hub interactions of 150.  Players did not miss the 1000s of players. 

This reality raises serious questions about the need for designs that emphasize ‘massively multiplayer’ experiences. Just because a concept sounds exciting (“a million people building a new society!”) doesn’t mean it is a smart design. Human social capacities are limited and we can (and have!) over-engineer multiplayer systems.

Scope of interaction
How many people does a single interaction impact? A player can interact with a single individual or they can interact with one of the group sizes listed above.

  • Targeting a player interaction at small groups: With smaller group sizes you get communication similar to a conversation. There is a clearly defined interaction loop that can stabilize on a set of shared vocabulary and social norms quickly.
  • Targeting a player interaction at larger groups: With larger group sizes you see more broadcast scenarios and interactions are broader, less tailored to individuals. When interacting with large groups, it is common for the massive response to flood the recipient with too much information. Extreme reactions are also more common as people talk over and past one another.

Degree of interaction

  • Parallel: Players can behave independently from one another. A ghost racing car rarely impacts another player. Often the primary benefit here is a sense of presence though it can also tie into lower frequency zero sum interactions like a leaderboard.
  • Zero Sum: The action of one player blocks or reduces the interaction of another player. In Habbo hotel, movement is a zero sum interaction since the placement of one character blocks another character from occupying the same spot. This was famously used as a griefing tactic to box in players.
  • Non-Zero Sum: The action of one player benefits another player. In Realm of the Mad God, shooting an enemy makes that enemy easier to kill for other players. Killing an enemy gives XP to everyone on the screen.

Matchmaking is the computer mediated act of introducing players to one another so they might interact.

This is a very broad definition of matchmaking, but is useful in the context of the wide range of multiplayer systems available. For example, a traditional console title might match players together by requiring players in a shared lobby to manually join a specific game. In Realm of the Mad God, players notice groups of players on a shared map and teleport to them. Both are forms of matchmaking, but they appear quite different in the player’s mind.

You can treat matchmaking abstractly as another interaction with a wait time.

Matchmaking window

The time you have to introduce a player looking for a multiplayer experience to another player. If the window is too long (and the player is not entertained during the window), they will leave.

Matchmaking failure
When a player comes online and there is not another player immediately online, the players will quickly become bored and leave. There is often an implicit promise of a fun multiplayer experience and if you don’t deliver that in seconds, your game is judged as a failure.

What can be frustrating to the developer is that another player pops in a minute later and experiences the same exact thing. If one players sticks around long enough, another player will show up.

Calculating daily failure threshold: If the matchmaking window is W in minutes, then failure will occur when the daily active population is less than Minutes In a Day / W. So for example if people are only willing to wait half a minute, you’d need a daily active population of 1440 / 0.5 or 2880 players. Actual results will be lumpy because we are dealing with a statistical process and player populations peak around specific times of day.

This may seem quite reasonable, but if you are matchmaking primarily with small groups of friends, players may feel like no one they know is ever on.

When the player population is segmented by social groups, game modes, players skill levels, time playing and other factors, it becomes fragmented. This reduces the actual concurrent player numbers available to the matchmaking system and increases the chance of a matchmaking failure.

Example of fragmentation: Suppose a game has 3 multiplayer modes and matches players into 10 skill categories. If the daily failure threshold is 2880 (from the previous example), then in the worst case scenario, you’d need 3x10x2880 or 86,400 concurrent players for everyone to get their first choice.

Fragmentation creeps into a design. Someone wants to add another event or another game mode. The code is free, so why not? Surely the players will self sort. They do a little, but mostly they wonder why the matchmaking experience is so painful and then leave your game in frustration. Avoid fragmentation creep and put players together in big easily matched buckets when possible.

Concurrency ratio
Any game has a number of active accounts and a number of players that are online at once. Players cannot be playing constantly and are often offline For example, an MMO might have 100 active subscribers, but only 10 of those are on at any one time. This would result in a concurrency ratio of 10:1.

Some typical concurrency ratios:

  • MMO: 10:1
  • Online Console Service (like Xbox Live): 25:1
  • Individual Console game: 150:1
  • Flash game: 250:1
  • Couch multiplayer: 1000:1

The Active User Trap: One common mistake is that developers assume that high active player numbers will result in robust multiplayer communities. However you really need to look at actual concurrent users since many game types have extreme concurrency ratios. A game may have 1000 players but when each of those logins last 5 minutes and are spread over a week, you’ll average 0.5 concurrent players. If your matchmaking system doesn’t deal well with these sporadic, tiny populations, the game dies.

Relationship strength
Not all player interactions are equal due to unique relationships between players. Players build complex social models of other players both in game and out of game. Strangers are understood through simple, stereotype-based models. Close friends are understood through complex individual models built up over thousand or millions of minute reciprocation sequences.

Building mental models of another human is a biologically expensive operation. We seem to be able to keep 5 to 9 detailed models active at any one time though we can store many more at various levels of detail. Friendship is rare, complicated and built over long periods of time.

There are numerous benefits and trade offs that come from gaming with strangers or friends and friend-based play is often highly desirable. Games can help create friends by promoted repeated positive interactions. The higher the frequency, the quicker the relationship evolves.

Relationship strength is a spectrum, but there are two commonly drawn categories

  • Multiplayer with Strangers
  • Multiplayer with Friends

Multiplayer with Strangers
Let’s tackle multiplayer between strangers online first.


  • Anyone playing the game can be matched with anyone else with little regard for existing social bonds.  This model becomes immensely attractive when there is a small initial player base. Often this means if 10 people are online, 10 people can be playing together.
  • Strangers, particularly young males, historically tend to compete with one another. This means that player vs player games that emphasize open conflict are an easy means of generate fun for some stranger populations.


  • Strangers have weak bonds and will not naturally engage in prosocial activities like collaboration.
  • Skill differentials matter since players tend to compete. This forces developers to focus on segregating experts from newbies and fragments the population.
  • Not all player populations thrive on overtly competitive gameplay. Some players prefer to collaborate. Others compete quietly for status by manipulating social relationships. These are difficult in stranger scenarios.

Multiplayer with Friends


  • Players are much more likely to schedule time together to play.
  • Cooperative and communication heavy activities are considered fun.
  • Mentoring between divergent skill levels is more likely to occur.
  • Competitive play is still valid.


  • There’s often little overlap between existing social groups and interest in a specific game.
  • There’s often little overlap between existing social groups and share scheduled.
  • Friend groups are small. Engaged players typically have 5-9 close relationships. Casual acquaintances may be higher in number, but in practice may act more like strangers. If you have 10 friends and the concurrency ratio for a service is 25:1, you will essentially never stumble upon them online.

Tools for dealing with multiplayer logistics

So far I’ve just talked about the concepts behind multiplayer. Now we’ll dig into some common patterns that make use of these. There are three broad architectures:

  • Match-based games
  • Room-based games
  • Asynchronous games

Tools: Match-based games

Due to the long history of event-based matches in sports and board games multiplayer computer games often are organized into matches that start at a specific time and stop at a specific time or win condition.

Matches are the default logistics model used for many console and PC-style online games. They are immensely problematic. The matchmaking interaction has a very narrow window during which it requires a full set of players to show up in order to enter the game successfully. If you don’t get in, you need to wait till the next match starts. If this time is longer than the wait window, you’ll quit. Considering concurrency ratios, fragmentation and the burden of a tiny matchmaking window, it is not surprising that only the most popular match-based online titles survive.

Scheduled Events
Ask people to show up at the same time. This essentially shifts play times so that they are on at the same time. Scheduling is an expensive planning activity on the part of the player. You’ll get a low overall engagement rate but those who do participate are likely to find others to play with. A special Halloween boss encounter in a MMO is an example of a scheduled event.

Events can be scheduled by the game developers or they can be scheduled by the players. Player scheduled events have the benefit of stronger social ties in play. Folks that get together for a board game night are such an event. The downside is that arranging meeting is a convoluted process (as anyone that tries to set up meetings with more than 6 people can attest). It often requires leadership or persistence, attributes that are often in low supply for lightly engaged players.

Regularly scheduled events
If you can make the event regular, people will get in the habit of being at a particular place at a particular time. This reduces the cost of planning for the player and they can just reliably show up at a specific time instead of worrying about conflicts. A standard Wednesday game night for a guild is an example of a regularly scheduled event.

Short matches
If matches are short enough (2 minutes? 30 seconds?) players that don’t get into the current match wait less time than the matchmaking window and thus are still around when the next match starts. Online word games do this, but it could be readily applied to other titles.

Spectating on matches while waiting
If you can keep players entertained by letting them watch the game in progress, you can lengthen the matchmaking window. Games like Counter Strike do this upon entrance into a server and upon death.  Chatting is often tossed into this mix since it is a nice downtime activity that can build relationships.

Bots during matchmaking to fill waits
Instead of putting players in a queue where nothing happens, put them directly into a match with bots as the opponents.

Getting bots that act like humans is often a tricky Turing test to pass. Not letting players talk and having a very narrow window of expression helps.
When players learn this is happening they will start to distrust the game and question if all opponents are bots.

Mechanical Interdependencies
Create activities that require multiple people to show up in order to achieve success. Not showing up lets down the group and thus increases the social pressure to show up. This can take the form of explicit roles or by limiting resources so that players can’t accomplish large goals independently.

Tool: Room-based games

Ultimately match based games result in often insurmountable logistical issues for smaller games. A favorite alternative is room based games. Unlike a match which has a distinct start and exit, room-based games create a persistent playspace that players may independently join the game in progress (or leave the game in progress)

Rooms have a maximum number of ‘slots’ or spaces for players to join them. Once the room is full, no more players may join. This dramatically reduces the load on matchmaking. All you need to do is find a room with an empty slot available and dump players into it.

The downsides to rooms is that they eliminate certain game types. Group starting times are obviously out which eliminates most traditional sports. Games with progression arcs result in players that start at different types having differing levels of progress. You need to get creative.

A game like Journey is essentially a room based game with join and leave in progress. The max slots was 2 and as long as there were two concurrent players you could have a multiplayer experience.

Most MMO’s are room-based games with very large rooms.

Join In Progress, Leave in Progress
One reason why rooms offer such improved logistics over strict matches is that players may join or leave at any time.  Since it is highly unlikely that everyone will leave at once, especially in games with a predominance of parallel interactions, shortly after one person leave another person will join and you’ll get a consistent average population in the room.

Pure match-based games are often quite rare because many popular games treat the individual server as a room and the match-based elements are merely scoring atop a dynamic population of players joining and leaving in progress.

Elastic Room Instances
Create and remove rooms to fit that maximum currency. Given a room of maximum size N, you create new rooms so that the number of rooms equals Concurrent Player / N. So if 10 players are online and your default room size is 4, you’ll make sure there are 3 rooms to join.

To collapse a room, just wait until it naturally empties out as players leave the game or kick people out due to some in-game event intended to free up the instance. Once the room is empty, delete it. By giving rooms priority, you can fill the highest priority rooms first and kill off the low priority rooms. The result is that almost all rooms are constantly full and only the remainder are left alone.

We used this when creating world shards in Realm of the Mad God. The world generally felt full even when the concurrent population fluctuated dramatically.

Default to single player gameplay for rooms with one player
Room-based games have the ‘remainder’ issue. A given maximum room size rarely divides evenly into the concurrent population. If the room size is 2 and there are 3 players online, there will be 1 player placed in a new room by themselves.

To deal with this scenario, it helps to have a game that is playable as a single player game until the next player joins the room.

A retail game like Dark Souls assume very low concurrency and plays almost entirely as a single player game (with light async ghost interactions) The concurrent matchmaking is a silent parallel interaction that happens without interrupting the single player adventuring. Since having a second player in the right place at the right time is uncommon, the game instead treats it as a special occurrence. (Note that since Dark Souls promises a single player game, they make the concurrent multiplayer experience opt-in through the use of soapstones. The soapstones signal that a successful match has occurred and the player must accept it. Respect your initial promise when you mix single player and multiplayer interactions.)

Asynchronous techniques

A player completes an interaction and then the game signals to them that they have a very long period of time before the other player responds. The next day or so, the other player sees the first player’s action and composes their response. This can take place over days.

Words with Friends is a modern example of this technique, but the practice goes back decades if not centuries (if you include play-by-mail board games). It is an intimate method of play that works well with text communication much like instant messages or email. Play-by-mail is very amenable to play between friends.

A downside is that players are deeply impatient. A single turn may not be all that satisfying and then having to wait multiple days for a response has a major drop off in retention. There are still matchmaking issues if fragmentation is too high but the explicitly long wait window ensures players don’t get too worried that the system is broken (they may just not like the system).

The other downside is that in turn-based games, the non-response of one player may block another player.

High Capacity Play-by-mail
One solution is for a player to start a large number of play-by-mail games. Given a response time of T days and a desired average wait time of W days, then the optimal number of games going at once is T/W. (So if you want a game popping in every hour and it takes 24 hours to response, then you need 24 games going.)

One added benefit of all this is that player response times are semi-random. This acts as a random reinforcement schedule and can result in very long term retention.

The downside to the technique is that it requires players to start up a lot of games in order to reduce the wait window and motivating players to do so is tricky. Automated game matching may be an answer.

You can leverage active players to invite new players to the game. These players often have strong relationships with the player and can potentially act as a source of new players into the game.

Match with friends
Since async forms of multiplayer rely heavily on players to come back later, their game designs often relies on social connections outside the game as a form of additional pressure. If you can get people to invite or match with friends (as in Farmville) a lack of reciprocation in interpreted as putting their existing relationships at risk. The threat of being rude or seeming like you don’t care to someone you like is often enough of an incentive to encourage returning to the game.

Systems that play off existing relationships run the risk of alienating players. Players not invested in the game tend to find mechanical interactions annoying. Authenticity and intentions matter when it comes to human relationships.

In building games, you may create a persistent structure such as a town that other players can then visit independently of your presence.

Clash of Clans uses this when players attack your town. The town is a persistent structure that then acts as a level for the other player to conquer.

Visiting usually boils down to a simple resource exchange despite the trapping of being something more meaningful. The issue comes from questions of what happens when multiple people visit at once and the solution is to spin up different instances.

Jason Rohrer’s The Castle Doctrine uses the unique design of making visiting a blocking interaction. This opens the possibility for permanent changes being made to the visited location. One can imagine more complex versions of musical chairs as the foundation for some innovative designs.

Record players behaviors and then play them back alongside the player in a similar environment. This works particularly well with parallel interactions like you see in racing games. It can also work with the rare non-zero sum interactions like you see in multiple time track games like Cursor 10 or Super Time Force. Ghosts gives a sense of presence but removes the matchmaking time constraints.

The downside is that ghosts usually works poorly with blocking or zero-sum interactions. The other downside is that if the ghost data and the environment get out of sync, then the ghost data becomes invalid. These can be alleviated slightly by either skipping blocked actions or falling back on AI behaviors that manage exceptions

On a more abstract level, ghosts are just tracks of player data that can be replayed on any sort of trigger. They can be triggered at the start of a race, when the player comes onscreen or when the player uses the special amulet of Ally Summoning.

General practices

This essay has covered a lot of ground (and is still incomplete!), but I’ll leave you with a few quick recommendations.

  • Don’t fragment your matchmaking population. Be very wary of the point at which your concurrent game’s matchmaking fails due to high concurrency ratios.
  • Use room-based methods where possible, not match-based play.
  • Persistence is your friend since it enables asynchronous interactions.
  • Relationships are your friend since they increase retention. Try to build them where possible.
  • Prototype early and deal with low populations density issues during the prototyping phase.


I remain quite excited about new multiplayer games. When I look at the theoretical advances being made with game grammar via Joris Dormans internal economies and some of the multiplayer concepts in this essay, the unexplored space for new forms of game seems vast. If you want to make your mark on our modern world, make a great multiplayer game. Solve the logistical issues that prevent people from playing together and build a game that spreads quickly and easily throughout communities.

take care,

Notes and references

Topic for future investigation
Concurrency is a statistical process; there’s a chance of a player being on at a given time. This whole topic could stand to be dealt with in a mathematically more rigorous fashion.

Essays and books

Prototyping Challenge: 3D Modeling Tool for 2.5D RPG Art

Leave a comment
Ported Posts / Uncategorized

I was creating some 2.5D art for an game jam recently in a perspective similar to a 2D RPG like Zelda. Naturally my next step was that I started thinking about how you might recreate this style using a custom 3D modeling tool. Yes, another art tool design challenge. 🙂

I’ve played with voxel editors in the past, but I’m not completely happy with the blocky results that they produce. So where’s a quick and dirty minimalist 3D modeling tool design with the following goals:

  • Enable artists to make beautiful 3D models that include curves, ramps, intersecting shapes, and other sophisticated elements.
  • Make a 3D modeling tool that is as easy to use as a pixel art editor. In particular, I’ve realized that this editor can avoid a lot of the messiness that usually appears when you include 3D rotation.

The result should be art that is still stylized, but has still has an immense range for a talented illustrator. I’ve made other attempts at this in the past, but I think this one has legs. 🙂

Target style

I put together a set of 2D art for a future game jam. The resulting 3D modeler in this essay should be able to easily create everything in this image, plus a whole bunch more.

When making this art, it occured to me that there is a rather magical property of the traditional 2.5D view that I don’t think has been well tapped before. Once you adopt a forced 2.5D perspective, most 3D primitives are possible to be represented in a 2D plane. This makes a ton of traditional 3D operations dramatically simpler. You can think of a 3D space being reduced to a couple of 2D controls

  • Top Plane: The top of a cubic volume enclosing the primitive.
  • Front Plane: The front of a cubic volume enclosing the primitive.

Here’s an example with a cylinder and the planes made explicit

With these, you can do basic moving and scaling of the object. The trade off is that you lose rotation.  My bet is that like voxel editing, you can lose rotation and still end up with a vast visual play space.

If you get fancy, you can flip an object 90 degrees forward so that:

  • Front Plane: Extrusion, XY position
  • Top Plane: Scale, XZ position

The basic flow of modeling

Here’s what you do to make a model.
  • Add primitives to an object
  • Arrange (scale, position) and color them.
  • Combine these tile-like objects together in a game to create complex scenes.

List of Operations

Here’s the list of features that a simple prototype of the editor would support.

1. Add a primitive
You can add a primitive to the scene

  • Cube
  • Cylinder
  • Arc (half cylinder)
  • Ramp (NSEW variants)

2. Select a primitive
Click on a primitive in the scene to select it.

  • 6 dots appear
  • The bottom 4 define the front plane.
  • The top 4 define the top plane.

3. Move in XY plane
Grab the front face of a primitive to move in the X,Y plane

4. Scale in XY plane
Grab the corners of the front face of the primitive to scale it.

5. Extrude in Z
Grab back corners or edge of the primitive to extrude it.

6. Move in XZ plane
Grab the top of the primitive.

7. Select a color
Once you have selected a primitive, click on a color from the color palette to change the color.


There are a variety of limitations enforced that make modeling far easier and closer to pixel art.

  • Snapping: All operations snap to a 16x16x16 grid.
  • Primitive budget: Each object is made up of a total of 32 primitives.
  • No rotation of primitives. Again, this is a hard problem in 3D. So we avoid it.
  • Limited colors: All primitives use the same 16 color palette. This allows us to appear to make complex objects out of multiple primitives by simply connecting simple shapes of the same color.
  • Surface details are generated using other primitives. Primitives whose surfaces are coplanar are rendered cleanly as 2D textures. See bricks in the example above. Use creation order or order in the selection list to determine what shape is on top.

Bonus features

The above features are the minimal set.  There are other features you could add to flesh out the tool.

  • Selection list: A list of all 32 primitive in the object. Click on one to select that primitive. Thumbnails are a plus. Bonus points if you can rearrange these.
  • Hiding/Showing primitives: There is an eye icon in the selection list next to each primitive and you can hide or show that.
  • Rounded corners: Give the selected primitive rounded corners. These are in 1, 2, 3 or 4 grid width rounds.
  • Flip Front / Top: Rotate the primitive forward or backwards 90 degrees. Example: A flat disc becomes a wheel.
  • Cutter object: The selected primitive now subtracts from the solid instead of adding. This lets you cut holes.
  • Textures: In addition to colors, you can specify some simple textures.

Special rendering tweaks

There is a reasonable chance that objects will look like rather ugly without the right rendering. Play with this till you get something that works.  Here’s what I take into account when drawing things manually.

  • Parallel Light source (think sun) from the top so the front is in slight shade.
  • Shadows on other objects. Slight ambient occlusion will tend to make the objects feel more connected.
  • Shading objects darker near the bottom and lighter near the top help preserve a sense of depth.

Test cases

Making art tools without art samples is tricky. The following are test cases that you can try to replicate once you’ve built the basic tool.






If anyone makes a prototype, I’ll link to it here.
*Update!* Angry Octopus has a prototype.  (The more the merrier, so keep making ’em.)
All the best,